ТЕОРЕМА БОНДАРЕВОЙ—ШЕПЛИ*

Н. И. Наумова

Н. А. Соловьёва

nataliai.naumova@mail.ru

vinyo@mail.ru

18 февраля 2016 г.

Аннотация. В теореме Бондаревой—Шепли устанавливается критерий непустоты *С*-ядра кооперативной игры. В докладе приводится усовершенствованный вариант доказательства этой теоремы, в котором наряду с первой теоремой двойственности из линейного программирования используется лемма о базисном плане.

1°. Кооперативные игры были введены в книге [1]. Кооперативной игрой n лиц называется пара (N, v), где $N = \{1, \ldots, n\}$ — множество игроков, а v — отображение, которое каждому подмножеству S множества N ставит в соответствие вещественное число v(S). При этом требуется только, чтобы $v(\varnothing) = 0$. Отображение v называется v

Любое непустое подмножество S множества N называется κ оалицией. Число v(S) интерпретируется как сумма, которую могут заработать вместе игроки из коалиции S, если будут действовать скоординированно. При этом v(N) — это сумма, которую заработают все n игроков в случае согласованных действий.

C-ядром игры (N, v) называется множество

$$C(N,v)=ig\{x\in R^n: \sum_{i=1}^n x[i]=v(N)$$
 и
$$\sum_{i\in S} x[i]\geqslant v(S)$$
 для любого $S\subset N,\,S\neq\varnothing,\,S\neq Nig\}.$

Предполагается, что все игроки вместе создали коалицию («большую фирму»), доход которой определяется величиной v(N). Общий доход распределяется между участниками коалиции в соответствии с вектором x. Если C-ядро непусто, то суммарный доход v(S) любой коалиции не превосходит суммарного

^{*}Семинар по конструктивному негладкому анализу и недифференцируемой оптимизации «CNSA & NDO»: http://www.apmath.spbu.ru/cnsa/

дохода участников этой коалиции в рамках большой фирмы. В таком случае игрокам невыгодно уходить из большой коалиции N и создавать какую-либо частную коалицию S.

Непустота C-ядра является важной характеристикой кооперативной игры. При решении задачи о непустоте C-ядра используются результаты теории линейного программирования.

2°. Рассмотрим следующую задачу линейного программирования:

$$\sum_{i=1}^n x[i] \to \inf,$$

$$\sum_{i \in S} x[i] \geqslant v(S) \quad \text{при всех } S \subset N, \ S \neq \varnothing, \ S \neq N.$$
 (2)

Множество планов задачи (2) непусто. Например, вектор x с компонентами $x[i] = \max\{0, \max_{S: i \in S} v(S)\}$ является планом задачи (2). Значение целевой функ-

ции задачи (2) ограничено снизу на множестве планов числом $\sum_{i=1}^{n} v(\{i\})$. Следовательно (см., например, [2, с. 14]), задача (2) имеет решение. Обозначим через M_* минимальное значение целевой функции.

ПРЕДЛОЖЕНИЕ 1. С-ядро C(N, v) кооперативной игры (N, v) непусто тогда и только тогда, когда $v(N) \ge M_*$.

Доказательство. Необходимость. Если $C(N,v) \neq \varnothing$, то любой вектор $x \in C(N,v)$ является планом задачи (2). Значит, $\sum\limits_{i=1}^n x[i] \geqslant M_*$. Непосредственно из определения C-ядра следует, что $v(N) \geqslant M_*$.

Достаточность. Предположим, что $v(N) \geqslant M_*$. Возьмём оптимальный план x_* задачи (2). Тогда вектор $x \in \mathbb{R}^n$ с компонентами

$$x[1] = x_*[1] + v(N) - M_*,$$

 $x[j] = x_*[j], \quad j = 2, \dots, n,$

принадлежит C-ядру кооперативной игры.

 3° . Перенумеруем все непустые собственные подмножества S множества N в произвольном порядке. Получим последовательность

$$S_{\hat{1}}, S_{\hat{2}}, \ldots, S_{\hat{m}},$$

где $m=2^n-2$. Обозначим $\widehat{M}=\{\widehat{1},\ldots,\widehat{m}\}$. Введём матрицу $\chi[N,\widehat{M}]$ с элементами

$$\chi[i,\hat{k}] = \begin{cases} 1, & i \in S_{\hat{k}}, \\ 0, & i \notin S_{\hat{k}}. \end{cases}$$

Для примера рассмотрим случай трёх игроков (n=3). Зафиксируем порядок перебора всех непустых собственных подмножеств множества $N=\{1,2,3\}$:

$$S_{\hat{1}} = \{1\}, \quad S_{\hat{2}} = \{2\}, \quad S_{\hat{3}} = \{3\}, \quad S_{\hat{4}} = \{1, 2\}, \quad S_{\hat{5}} = \{1, 3\}, \quad S_{\hat{6}} = \{2, 3\}.$$

Тогда матрица $\chi[N,\widehat{M}]$ будет выглядеть так:

Введём вектор $v[\widehat{M}]$ с компонентами $v[\hat{k}]=v(S_{\hat{k}}).$ Тогда задачу (2) можно переписать в следующем виде:

$$\langle 1 |, x \rangle \to \inf,$$

 $\chi^T[\widehat{M}, N] \times x[N] \geqslant v[\widehat{M}].$ (3)

(Здесь 11 — вектор из единиц длины n.) Запишем задачу линейного программирования, двойственную к задаче (3):

$$\langle v, \lambda \rangle \to \sup,$$

 $\chi[N,\widehat{M}] \times \lambda[\widehat{M}] = 1 [N],$
 $\lambda[\widehat{M}] \geqslant \mathbb{O}[\widehat{M}].$ (4)

По первой теореме двойственности [2, с. 32] задача (4) имеет решение и её экстремальное значение равно M_* . Заметим, что множество планов задачи (4) не зависит от характеристической функции v, а определяется только числом игроков.

4°. План задачи (4) называется *сбалансированным покрытием* (термин введён Л. Шепли [3]). *Минимальным сбалансированным покрытием* называется сбалансированное покрытие, носитель которого не содержит строго носителей других сбалансированных покрытий.

ПРЕДЛОЖЕНИЕ 2. Вектор λ образует минимальное сбалансированное покрытие тогда и только тогда, когда он является базисным планом задачи (4).

Доказательство. Необходимость. Приводимое доказательство необходимости составляет часть доказательства леммы о базисном плане [2, с. 14].

Рассмотрим вектор λ^1 , который образует минимальное сбалансированное покрытие, но не является базисным планом. Носитель $\widehat{M}^1_+ \subset \widehat{M}$ плана λ^1 не пуст. Столбцы матрицы ограничений с индексами из \widehat{M}^1_+ являются линейно зависимыми, значит, система

$$\chi[N, \widehat{M}_{+}^{1}] \times z[\widehat{M}_{+}^{1}] = \mathbb{O}[N]$$
 (5)

имеет ненулевое решение $z_0[\widehat{M}_+^1]$. Положим $z_0[\widehat{M}\setminus\widehat{M}_+^1]=\mathbb{O}[\widehat{M}\setminus\widehat{M}_+^1]$. С учётом однородности системы (5) можно считать, что у вектора z_0 есть положительные компоненты. Зададим луч $\lambda(t)=\lambda^1-tz_0$, t>0. При любом вещественном t верно равенство

$$\chi \lambda(t) = \chi \lambda^1 - t \chi z_0 = 1$$
.

Вектор $\lambda(t)$ будет планом задачи (4), если $\lambda^1 - tz_0 \geqslant \mathbb{O}$. Заметим, что $\lambda^1[\hat{k}] - tz_0[\hat{k}] = 0$ при $\hat{k} \in \widehat{M} \setminus \widehat{M}_+^1$ и всех вещественных t. Кроме того, при $\hat{k} \in \widehat{M}_+^1$ таких, что $z_0[\hat{k}] \leqslant 0$, неравенство $\lambda^1[\hat{k}] - tz_0[\hat{k}] > 0$ верно при всех положительных t. Теперь рассмотрим $\hat{k} \in \widehat{M}_+^1$ такие, что $z_0[\hat{k}] > 0$. Обозначим

$$t_0 = \min \Big\{ \tfrac{\lambda^1[\hat{k}]}{z_0[\hat{k}]} \; \big| \; \hat{k} \in \widehat{M}^1_+: \; z_0[\hat{k}] > 0 \Big\}.$$

Пусть \hat{l} — индекс, на котором достигается минимум. Вектор $\lambda^2 = \lambda(t_0)$ — план задачи (4), при этом $\lambda^2[\hat{l}] = 0$. Таким образом, носитель плана λ^2 строго содержится в носителе плана λ^1 , так что λ^1 не является минимальным сбалансированным покрытием.

Достаточность. Пусть λ^1 — базисный план задачи (4) с носителем $\widehat{M}^1_+,$ который не будет минимальным сбалансированным покрытием. Тогда существует сбалансированное покрытие λ^2 с носителем $\widehat{M}^2_+,$ такое, что $\widehat{M}^2_+ \subsetneq \widehat{M}^1_+.$ Так как для планов λ^1 и λ^2 верны равенства $\chi[N,\widehat{M}] \times \lambda^1[\widehat{M}] = 1\!\!1[N],$ $\chi[N,\widehat{M}] \times \lambda^2[\widehat{M}] = 1\!\!1[N],$ то

$$\chi[N,\widehat{M}] \times \lambda^1[\widehat{M}] - \chi[N,\widehat{M}] \times \lambda^2[\widehat{M}] = \mathbb{O}[N].$$

Это равенство можно переписать так:

$$\sum_{\hat{k} \in \widehat{M}_{\perp}^1} \chi[N, \hat{k}] \times \lambda^1[\hat{k}] - \sum_{\hat{k} \in \widehat{M}_{\perp}^2} \chi[N, \hat{k}] \times \lambda^2[\hat{k}] = \mathbb{O}[N]$$

или

$$\sum_{\hat{k}\in\widehat{M}_+^1}\chi[N,\hat{k}]\big(\lambda^1[\hat{k}]-\lambda^2[\hat{k}]\big)=\mathbb{O}[N].$$

При всех $\hat{k} \in \widehat{M}^1_+ \setminus \widehat{M}^2_+$ верно $\lambda^1[\hat{k}] - \lambda^2[\hat{k}] \neq 0$. Значит, столбцы $\chi[\,\cdot\,,\hat{k}]$ при $\hat{k} \in \widehat{M}^1_+$ линейно зависимы и план λ^1 не является базисным.

5°. Напомним формулировку леммы о базисном плане [2, с. 14]. Рассмотрим задачу линейного программирования в канонической форме:

$$\langle c, x \rangle \to \inf,$$

 $Ax = b,$
 $x \geqslant \mathbb{O}.$ (6)

Предположим, что множество планов этой задачи непусто и целевая функция ограничена снизу на нём. Справедлива

ЛЕММА (о базисном плане). Пусть $b \neq \mathbb{O}$. Тогда любому плану задачи (6) можно сопоставить базисный план с меньшим либо равным значением целевой функции.

Базисных планов конечное число, так как различным базисным планам соответствуют различные носители [2, с. 15]. Таким образом, для решения задачи достаточно перебрать все базисные планы и выбрать те, на которых достигается минимум целевой функции.

Из леммы о базисном плане, предложений 1 и 2 непосредственно следует

ТЕОРЕМА БОНДАРЕВОЙ—ШЕПЛИ. C-ядро C(N,v) кооперативной игры (N,v) непусто тогда и только тогда, когда

$$v(N)\geqslant \max\Bigl\{\sum_{\hat{k}\in\widehat{M}}\lambda[\hat{k}]\,v[\hat{k}]\;\Big|\;\lambda[\widehat{M}]\;-$$
 минимальное сбалансированное покрытие $\Bigr\}.$

Напомним, что $v[\hat{k}]=v(S_{\hat{k}})$, где $S_{\hat{k}}$ — непустое собственное подмножество множества N, имеющее номер \hat{k} в произвольном заранее зафиксированном порядке.

Данный результат был опубликован О. Н. Бондаревой в 1963 году [4] и в 1967 году получен независимо Л. Шепли [3], который не использовал аппарат линейного программирования. Позднее эта теорема стала называться теоремой Бондаревой—Шепли.

 ${f 6}^{\circ}$. В качестве примера рассмотрим кооперативную игру трёх лиц. Зафиксируем тот же порядок непустых собственных подмножеств множества N=

$$= \{1, 2, 3\}$$
, что и в п. 3°. Задача (2) принимает вид

$$x[1] + x[2] + x[3] \to \inf,$$

$$x[1] \qquad \geqslant v[\hat{1}],$$

$$x[2] \qquad \geqslant v[\hat{2}],$$

$$x[3] \geqslant v[\hat{3}],$$

$$x[1] + x[2] \qquad \geqslant v[\hat{4}],$$

$$x[1] \qquad + x[3] \geqslant v[\hat{5}],$$

$$x[2] + x[3] \geqslant v[\hat{6}].$$

Перейдём к двойственной задаче:

$$v[\hat{1}] \lambda[\hat{1}] + v[\hat{2}] \lambda[\hat{2}] + v[\hat{3}] \lambda[\hat{3}] + v[\hat{4}] \lambda[\hat{4}] + v[\hat{5}] \lambda[\hat{5}] + v[\hat{6}] \lambda[\hat{6}] \to \sup,$$

$$\lambda[\hat{1}] + \lambda[\hat{4}] + \lambda[\hat{5}] = 1,$$

$$\lambda[\hat{2}] + \lambda[\hat{4}] + \lambda[\hat{6}] = 1,$$

$$\lambda[\hat{3}] + \lambda[\hat{5}] + \lambda[\hat{6}] = 1,$$

$$\lambda[\hat{k}] \geqslant 0, \quad \hat{k} = \hat{1}, \dots, \hat{6}.$$
(7)

Нетрудно проверить, что базисными планами задачи (7) являются следующие векторы:

1.
$$\lambda^1$$
, где $\lambda^1[\hat{k}] = \begin{cases} 1 & \text{при } \hat{k} = \hat{1}, \hat{2}, \hat{3}, \\ 0 & \text{при } \hat{k} = \hat{4}, \hat{5}, \hat{6}; \end{cases}$

2.
$$\lambda^2$$
, где $\lambda^2[\hat{k}] = \begin{cases} 1 & \text{при } \hat{k} = \hat{1}, \hat{6}, \\ 0 & \text{при } \hat{k} = \hat{2}, \hat{3}, \hat{4}, \hat{5}; \end{cases}$

3.
$$\lambda^3$$
, где $\lambda^3[\hat{k}] = \begin{cases} 1 & \text{при } \hat{k} = \hat{2}, \hat{5}, \\ 0 & \text{при } \hat{k} = \hat{1}, \hat{3}, \hat{4}, \hat{6}; \end{cases}$

4.
$$\lambda^4$$
, где $\lambda^4[\hat{k}] = \begin{cases} 1 & \text{при } \hat{k} = \hat{3}, \hat{4}, \\ 0 & \text{при } \hat{k} = \hat{1}, \hat{2}, \hat{5}, \hat{6}; \end{cases}$

5.
$$\lambda^5$$
, где $\lambda^5[\hat{k}] = \begin{cases} \frac{1}{2} & \text{при } \hat{k} = \hat{4}, \hat{5}, \hat{6}, \\ 0 & \text{при } \hat{k} = \hat{1}, \hat{2}, \hat{3}. \end{cases}$

Полный перебор носителей показывает, что других базисных планов у задачи (7) нет.

Теорема Бондаревой—Шепли утверждает, что для игры трёх лиц C-ядро непусто тогда и только тогда, когда

$$v(N) \geqslant \max \Big\{ v[\hat{1}] + v[\hat{2}] + v[\hat{3}]; \ v[\hat{1}] + v[\hat{6}]; \ v[\hat{2}] + v[\hat{5}]; \ v[\hat{3}] + v[\hat{4}]; \ \tfrac{1}{2} \left(v[\hat{4}] + v[\hat{5}] + v[\hat{6}] \right) \Big\}.$$

7°. Алгоритм перечисления всех минимальных сбалансированных покрытий для кооперативных игр с произвольным числом игроков был предложен Б. Пелегом в работе [5].

ЛИТЕРАТУРА

- 1. Нейман Дж., Моргенштерн О. *Теория игр и экономическое поведение*. М.: Наука, 1970. 707 с.
- 2. Гавурин М. К., Малозёмов В. Н. Экстремальные задачи с линейными ограничениями. Л.: Изд-во Ленинградского ун-та, 1984. 176 с.
- 3. Shapley L. S. On balanced sets and cores // Naval Research Logistics Quarterly. 1967. V. 14. P. 453–460.
- 4. Бондарева О. Н. *Некоторые применения методов линейного программирования к теории кооперативных игр* // Проблемы кибернетики. 1963. Выпуск 10. С. 119–139.
- 5. Peleg B. An inductive method for constructing minimal balanced collections of finite sets // Naval Research Logistics Quarterly. 1965. V. 12. P. 155–162.