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AN EFFICIENT METHOD TO SOLVE THE
MINIMAX PROBLEM DIRECTLY*

C. CHARALAMBOUS]" AND A. R. CONN

Abstract. Over the past few years the circuit and system designers have shown great interest in minimax
algorithms. The purpose of this paper is to present a new algorithm to solve the nonlinear minimax problem.
The minimax optimization problem can be stated as"

where

minimize Mr(x)

Mr(x) max /] (x)
li;m

andx=[xl, x2," ,x,] r.
The above objective function has discontinuous first partial derivatives at points where two or more of

the functions/ are equal to M even if/(x), 1 _<-i-< m have continuous first partial derivatives. Thus we
cannot use directly the well known gradient methods to minimize Mr(x). Unlike the work by Bandler and
Charalambous where they tackle the minimax problem as a limiting case of the least pth problem (so as to
overcome the difficulty of discontinuous first partial derivatives) our approach is direct. We use two distinct
search directions in the algorithm. The first, the horizontal direction, attempts to reduce Mr(x) whilst, at the
same time, keeping those functions whose values are close to Mr(x), approximately equal. The second, the
vertical direction, amounts to attempting to decrease the error to within which those functions are equal to
Mr(x) by means of linearization.

A linear search follows after the horizontal direction has been calculated. The linear search incorporates
several simple features of the algorithm and numerical results to date suggest the resulting algorithm is very
efficient.

1. Introduction. The minimax optimization problem can be stated as

(1.1) P minimize Mr(x) max/(x)
i[M]

where

(1.2)

(1.3)

[M]=[1, 2,... ,m],

x x.]

and fl(x), f2(x)," ", f,,(x) are in general nonlinear functions with respect to the
variables, x, x2," , x,.

The objective function Mr(x) has discontinuous first partial derivatives at points
where two or more of the functions/ (x) are equal to Mr even if/ (x), 1 =< =< rn have
continuous first partial derivatives. As an illustration, Fig. 1 shows the contours for
Mr(x) for Example 1 viz.

Example 1.

/2(x) (2-x):+ (2-x:),
fa(x) 2 exp (-Xl + x2).

Sharp corners denote points of discontinuous first partial derivatives [indicated by
dotted lines in Fig. 1]. Because of these discontinuities we cannot use directly the well
known gradient methods to minimize Mr(x).
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FIG. 1. Contours ofMf(x)forExample 1.
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The minimax problem is equivalent to the following nonlinear programming
problem (see for example [19]).

(1.4) minimize z (a new independent variable)

subject to the conditions

(1.5) (z,x)=z-](x)>-O, i=l,2,...,m.

Now the nonlinear programming problem can be solved by any well known nonlinear
programming algorithm, thus obtaining the optimum minimax solution.

Various other approaches have been proposed for solving the minimax problem,
some of the most relevant of which are due to Warren, Lasdon and Suchman [19],
Osborne and Watson [16], Bandler, Srinivasan and Charalambous [5], Bandler and
Charalambous [3], [7], and Zangwill [20].

The first method 19] transforms the nonlinear minimax optimization problem into
a nonlinear programming problem and solves it by well-established methods. The
second method deals with minimax formulations by following two steps---a linear
programming part which provides a given step in the parameter space, followed by a
linear search along the search direction (similar algorithms have been proposed by
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Ishizaki and Watanabe [14] and by Madsen [15]). The third method uses gradient
information of one or more of the functions to get a downhill direction by solving a
suitable linear programming problem. A linear search follows to find the minimum in
that direction, and the procedure is repeated. The penultimate method [3], [7] is a
generalization of the Polya algorithm [9]. A pth norm-like function is formed which has
the property that if p oo, the function is equal to the maximum of the set of functions
which we want to minimize.

Finally, the method of Zangwill [20] is closely related to the algorithm proposed in
this paper and will be discussed in more detail below.

Consider Fig. 1 again. Let us suppose we are at the point x where fx(X)= f3(x)-
M(x). An obvious direction to choose is direction shown, which tries to keep both
functions ]’l(X) and f3(x) equal. (Note that this would be exact if the functions fl(x) and
f3(x) were linear). One way to obtain this direction is by using projection matrices.
Consider the following nonlinear programming problem at the point x.

subject to

Let

Define

The direction

minimize z (a new independent variable)

I(Z,X)-’Z--fl(X)O,

6(Z, X)= Z --/(X)>---- O.

V Xo)N= Vb’(z,x where V [0 0 x]r

P I-NT[N NT]-lY

q PV(-z)

is orthogonal to Vl(Z,X) and V3(z,x) and decreases z. (Note that P and q are
independent of the value of z.) Let 4 be the vector obtained from q by deleting its first
component. Then 4 has the property that it will decrease fx and f2 and at the same time
will try to keep them equal. Therefore is the required direction. Nowwe have we can
proceed to do our minimization on the minimax function directly. It is important to note
that we are not solving the nonlinear programming problem given by (1.4)--(1.5).
Instead we use a similar formulation to get the direction 4.

In our algorithm each iteration consists of two directions. The first, the horizontal
direction which tries to keep locally the same set of the functions near active (two or
more functions are considered near active if they are equal to the present maximum up
to a specified tolerance) and at the same time to decrease the value of Me; the direction
in the previous example. The second, the vertical direction, amounts to attempting to
satisfy the near active functions exactly by means of linearization. A linear search
follows after the horizontal component has been calculated. The linear search incorpo-
rates several simple features of the algorithm and numerical results to date suggest the
resulting algorithm is very efficient.

2. Notation. When we want to find the direction of search at a point x k we set
z zk M(x). By doing so a near active function in the minimax problem is a near
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active constraint in the corresponding nonlinear programming problem. More specifi-
cally,

E(x k, e) {i [M]lMf(xk) --fi (X k) < e } (active functions at the point
x k for the minimax problem)

{i [M]lz -/(x)< e } (active constraints at the point
x k for the corresponding non-
linear programming problem)..

(Note E(x k, e) can be considered dependent only on x k since Zk Mr(x k).)
I(x k, e) [M]\E(x k, E) (inactive functions at the point

xk for the minimax problem and
inactive constraints at the
point x k for the corresponding
nonlinear programming problem).

[oCt(z, x) x)

(note that VCj(z, x)is independent ofz)

Obviously Vz e.

e

1

OCt(z, x )] T [1,-Vfr(x)] r

an n + 1-dimensional unit vector.

At this point let us accept the following convention" if, in a particular context, there
will be no ambiguity, we may denote functional expressions dependent upon x and
sometimes e more simply by abandoning one, or often both, of its arguments. Thus
A (x, e ), E(x, e ), q (x, e ), S(x, e ), etc., will sometimes be denoted by A (x), E(x), q (x),
S(x), etc., or sometimes as simply as A, E, q or S, etc.

3. The algorithm.
Step O. Set Label O, k O, VS 0, x x 0, the starting point, and a value of e, and

epstop. Set rmax; Note rmax is used in the linear search algorithm. It denotes an upper
bound on the admissible stepsize.

(Note that Label is used to indicate whether a vertical direction should be taken
(Label 6) or not (otherwise). Similarly VS indicates whether the vertical step was
successful (VS 1) or not (VS 0)).

Step 1. Set Zk Mr(x k). At the point x k determine the active functions within the
specified tolerance. In other words, determine.E(x k, e).

Step 2. Determine the projection matrix. (This step involves inner iterations.) Set

] 0,

p(O)= I
Ao=

(the (n + 1) x (n + 1) unit matrix),

(the empty set),

and go to (3.3) below to calculate the direction of search. For an arbitrary integer > 0
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define

V(z, x )

(3.1) No)=
T z k)

i.e., N) is a (n + 1) matrix whose rows are the gradients of some or all of the active
constraints.

Also, the set A ={il, i,..., i} has been defined at the (]-1) step. (We shall
basically consider A as an ordered set. However, sometimes we shall treat it as an
unordered set carefully avoiding ambiguities). Let

(3.2) P() = I- (N())T[N()(N())r]-N();
P() is an (n + 1)x (n + 1) matrix which is a projector onto the space orthogonal to the
space spanned by the vectors cq(z, xk), , qb(Z, Xk). It is important also to note
that the way the projection matrix is built up guarantees that the gradient vectors
Vqbil(z, xk),...,Vqbij(z,x k) are linearly independent and therefore the matrix
N(i(N(i)r is nonsingular (n.b., in practice, of course, we do not in fact actually compute
matrix inverses but use the iterative formulae of Rosen [18] for the nonlinear [’s and
methods similar to [6] for the linear functions). Set

(3.3) q()= P()e

(note that 7z e and therefore the last n components of q() is an uphill direction for
Mr(X) at the point x ). Set

{ q(J)TVg)i(Z’Xk) ]iE(x,(3.4) ij+a the that maximizes iiq(ql IIv ,(z, x )[I )\aj

(by Ilxll we mean (x rx)l/2). If

go to (3.6) below. If

(3.5)

q()v4,/(z, x)<

q(J)TVb, (z, x t,
,+, )>0

set

Ai+x Ai t.J {ii+a}
]’]’+ I.

If the cardinality of Ai n + I go to Step 7 below, otherwise go back to (3.1)--(3.3) (that
is, calculate the new projection matrix P(J) and the new direction q (]) which is now going
to be orthogonal also to Vbj. Then calculate ij+x and continue the procedure until either
(3.5) is not satisfied or the cardinality of A reaches n + 1).

A(xk, e)=A,
(3.6) e(x, e )= e(),

q(x,e)=q(.
(Recall that q is a function of x and e only.)

Step 3. Check ifoptimum is reached. If Ilqll < epstop and Label # 6 or if e < epstop
stop.
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Step 4. Linear search. The linear search is done directly on the minimax function.
Let be the direction q of Step 2 with the first component deleted (remember that the
first component of q corresponds to the z and t corresponds to x R"). Then -t has
the property that it will try to decrease the subset of the active functions at the point x k,
I(X),/2(X), ",/j (X), (i.e., those we put into the projection) by the same amount (thus
decreasing Mr(x)).

Also, by construction, the remaining active functions at the point x k will locally
decrease along- since this is the basis on which the projection matrix was determined,
i.e., at the point x we move downhill along the valley defined by the minimax functions
fil (x), f2(x),..., ]j (x). Note that if we consider only one function in A, say the function
fil(X), then -t -Vf,(x) which is the steepest descent direction for the function l(X’).
Determine z > 0 such that

max/(xk --’rt), [M],

is minimized.
For details of how this is done and whether exact minimization is required, see the

sub-algorithm "The Linear Search Algorithm" below. Put

xk <.-xk--q..
Step 5. Decision as to whether to do the vertical step or not. The vertical direction

amounts to attempting to make the near active functions exactly equal, and by doing so
an effort is made to get exactly on the line of the discontinuous derivatives, which is very
desirable when we are close to the solution. We expect that we will be close to the
solution either when the active functions remain the same at each iteration or if we are
trying to consider more than n functions in the projection. [Actually, even if we are not
near the .solution, should either of these two phenomena occur we might need to "reach
the valley floor" in order to move away from the current situation.] Algorithmically, if
the number of active functions have not changed in 3 consecutive iterations, and
Ilql[ < .1, or if Label = 6 (see Step 7) go to Step 6. Otherwise, set

k+l k
X =X

k-k+l

and go to Step 1.
Step 6. The vertical step. Set Zk M(xk). Determine E(x, e ). (Note that x e is the

point obtained from the horizontal step.)

N= N(i)=

N is a ] x (n + 1) matrix whose rows are the gradients of the active constraints which
form a basis for the space spanned by the gradients of all active constraints.

k T T TPut v(x e)= -N (N N )- b where b (c,..., cj). Put

=X
k

Xtemp + v (with 1st component missing)

If

max/(Xtemp) < max/(x ),
i[M] i[M]
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set VS= 1,

X
k+l__

Xtemp, k -k + 1,

Label 0

and go to Step 1. Otherwise, set VS O,

xk+l"’X k,. k-k+l,

and go to Step 1. (Note that fi,(xk)+vf(xk)=Mf(xk)+vl+e2 where leEl<e, l=
1, 2,. , ], where Vl is the first component of v(x k, e). Therefore the linearized active
minimax functions at x k will be within e at the point Xtemp X

k / ).
Step 7. Trying to put (n / 1) constraints in the projection, i.e.,

IAI n + 1 means one of two possibilities, either (a)we have reached the neighborhood
of the optimum, or (b) we have constraints considered active that actually are not. This
situation is handled in two ways. Firstly, by ensuring that we take a vertical step and
secondly, by reducing e. Algorithmically, set Label 6 put e e/10 and go to Step 6.

THE LINEAR SEARCH ALGORITHM.
Step O. If vertical step was successful (i.e., if VS 1), go to Step 4.
Step 1. Estimate any new function to become active. We consider all inactive

constraints j and estimate, in turn, the stepsize to make each Cj zero. Hence we
calculate

x
(3.7) ri V]’(z, xk)q ] I(xk’ e ).

in other words, if i was linear we calculate - .so that i((Zk, X k)_ rlq) 0 and in general
we linearize the ’s. Let f,,(xk) Mf(x k) for some m,/(x) an inactive function at the
point x k and rj as calculated by (3.7). Then we want the linear approximation of the
functions f,, and . about the point x k to be intersected at the point x k--’rfl. By
construction q is orthogonal to V(z-f,, (x)) at the point x k, i.e.,

(3.8) Vf,,,(xk)q=ql.

where

.Of,,](x)I_ 3x 3x,,
Also, by construction of

Zk fi(x k)_,ri[1, _Vfl.(x k)T][. ] =0.
By using the fact that Zk Mf(x k) we have

fi(X k)_ ,l.jVfi(xk)Tq Zk 7,ql

(3.9) Mf(x k)--’rq
fm(xk)--’riql.

From (3.8)

(3.10) (x ,;yd. (x (x

Comparing (3.9) and (3.10) we can see that we have the desired result.



SOLVING THE MINIMAX PROBLEM 169

Step 2. Omitting. unlikely values of z,, estimate the optimum, z, by linearizing the
minimax function about x k. For l(x, e) do the following: if zj < 0 or zj > ’max
neglect it as inadmissible. Otherwise calculate

where

Put

Now, determine such that

v[,(x)=
0

v[,(x),..., v/,(x)

i[M]

] I(x k, e)\{/’lzi < 0 or zi > " max}.

[M],

4. Theoretical results. We now proceed to prove the theoretical results of this
paper.

Put "/’opt 7"1.
Step 3. Determine if Zopt.is acceptable. Calculate the true minimax value at

x -’opt.

If this new value is an improvement over the old value, set xk= k. Otherwise go to
Step 4.

Step 4. Use cubic line search on the maximum of the functions taking ’opt as an
upper bound, to obtain the new x k if Zopt is available from Step 3 [i.e., if VS 0].

Some remarks on the two algorithms. (i) One useful way of looking at the above
algorithm is as follows. Firstly, the direction of search is obtained by formulating the
minimax problem as a nonlinear programming problem in the standard way (see for
example [19]). Whereupon the horizontal and vertical directions are obtained analo-
gous to Corm [11] and Corm and Pietrzykowski [12]. Secondly, however, instead of
using the determined horizontal direction to minimize a penalty function (as in [11]
and [12]) we proceed to do our minimization on the rain max function directly.

(ii) In practice we do not use an exact cubic linear search but merely ask for
sufficient improvement in the minimax value.

(iii) If in Step 5 of the main algorithm we decided to do the vertical step and it was
successful, we dispense with the estimation of ’opt as above and merely do the cubic
search. The motivation for this is as follows. The estimates for - are based on the
surmise that some new function will become active whereas the vertical step is based on
the assumption that this will not be the case.

(iv) Although much of the mechanics of the Zangwill [20] algorithm are in effect
equivalent to that of the horizontal direction of the above algorithm, the vertical
direction is dispensed with at the cost of having to reduce the activity tolerance to zero
[cf. the algorithms of Conn [11] and Conn and Pietrzykowski [12] for a similar result].
Furthermore the numerical aspects of the Zangwill algorithm are not considered by
him. In particular, no linear search suitable for minimizing Mr(x) is given. Furthermore,
Zangwill introduces separate cases dependent on whether a certain matrix is of full or
almost full ranks. Such a differentiation of cases is numerically undesirable and does not
occur in the algorithm of this paper.
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In the light of the first remark above in the previous section it is not surprising that
these results parallel those of Conn and Pietrzykowski in 12] with some simplifications
because of the absence of the penalty function and its accompanying parameter.

We begin by proving several propositions. Define

(4.1) h(x)= -q(x)
where, for theoretical purposes, we assume the linear search locates the exact
minimum.

We will need some additional notation and two assumptions.
Assumption 1. A minimax optimum at Xo can be characterized, as is well known

(see for example [20]) by

E uV/(Xo) 0,
i.E(xo,O) , ui 1,

iE(xo,O)

Ui 20, E(xo, 0).

The above is equivalent to the well-known Kuhn-Tucker conditions of nonlinear
programming. We shall assume that the ui’s, E,(xo, 0), are strictly positive. We shall
refer to this as the strict complementarity assumption.

Assumption 2. Throughout this work we assume that the minimax solution is
unique. We denote the corresponding x by Xo.

Additional notation: define

S(x, e )= {i E(x, e )lq ’(x)V4i(z, x)= O},

B (x, ) {y R"llly x < },

D(xo, , e)=B(xo, 6)f’)C(A, e),

where

C(A, e)= {x R" IE(x, e) A }

and

A A (x0, 0),

i.e., D(xo, 6, e) is the intersection of two sets--one of which is an open neighborhood of
Xo and the other of which is the set of all x such that the near active functions coincide
with those that define Mt(xo).

PRO,OSIrION 1. For e > 0 and arbitrary compact WR" there exists yl > 0 such
that

(4.2) Mt(x + h(x))-Mt(x) <-- -  llq(x)l[2,

Proof.

(4.3)
Mt(x z) max/(x

i[M]

= max [fi(x)--q’tTvfi(x)+r2ai(l, x)]
i[M]

where ai(’ ) is continuous, " R 1.
Since j L k E implies that/(x)< ]’k (X), it is clear that by choosing z sufficiently

small we may neglect all ] /, and replace [M] in the above by E. Therefore for -
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sufficiently small (4.3)can be replaced by

Mr(x rt) max [](x)-zlrVfi(x)+r2a,(l, x)]
ice

(4.4)
=<max (x)+max [-rEtrV](x)+z2a,(Et, x)].

ice ice

Consider -q orthogonal to the space spanned by ’bi’s where A LI S. Then by
property of projection

--qTz =(--Pz)Tz
--VzTpTpTZ

(4.5)
_(pvz)rpvz

i.e., qx Ilqll2, where qx is the 1st component of q. Also,

q rv(z fi)= O, cA D S,

i.e.

(4.6)

Similarly for E\(A LJ S), q T7(Z --](X))< 0, and therefore it follows that (4.6) holds.
Consequently

(4.7) max {-zqrZh + zZa,(, x)} =< - ,11 11=,
where /x is chosen accordingly. But by definition (4.1)

gf(x + h (x)) =< Mf(x tel) r > 0

and the proposition is proved.
PROPOSITION 2.

(4.8) A (Xo, 0)= E(xo, 0).

Proof. From the Kuhn-Tucker conditions it follows that for some uj > 0, j [M],

(4.9a) uiVf O,

k

(4.9b) E ui 1,
=1

where {ix,"’, ik} E(xo, 0).
However, the strict complementarity assumption guarantees that

(4.10) {ix,""" i,}=E(xo, O).

We now note that in the proof of Theorem 1, below, we have that for an arbitrary
(fixed for the rest of the proof) compact W

_
R",

{ix,"’, i,} A (Xo, 0),

[see formulae (4.53)-(4.58).]
Also, by definition A (Xo, 0)_ E(xo, 0). Therefore

A (Xo, O)= E(xo, 0).
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In what follows we shall denote A (Xo, 0) by A o.
PROPOSITION 3. For sufficiently small positive 6, e,

(4.11) A(x, e)=A forx D(xo, , e).

fin other words for sufficiently small positive 8 and e the constraints in the
projection remain the same in the neighborhood of the optimum point.]

Proof. Let us assume otherwise. Taking e > 0 such thatE(Xo, e) Ao (the existence
of such an e is guaranteed by Proposition 2 and the continuity of the thi) there exists a
sequence {(x, 8)}i=>1 such that

(4.12) xi B(Xo, 6), d; > 0, lim d; 0,

(4.13) a(x,)A.
Statement (4.13) can be satisfied since there is only a finite number of elements in any
A (xi, e).

From (4.12) it obviously follows that

(4.14) lim xi Xo.

Statement (4.13) implies that there exists it A o such that for ] < l, ij A o, ij A (x) and
itA(x). This follows trom the fact that in view of (4.14), A(x)_E(xo, e)=A for
sufficiently large i.

However, in view of the algorithm of 3, above,

(4.15) qt-1)_ [(t-1)(xi)]TV/ (Xi) >- O.

Consequently, in view of the continuity of q(t-l on {x}t_l t_J {Xo} we have that, using
(4.14),

(4.16) q-1)_ [(t-)(Xo) rVfi (Xo) >- 0

contradicting the assumption that it A o.
COROLLARY 3.1. Under the assumption ofProposition 3, dp, Nand q are continuous

on D(xo, 6, e ).
Now defining

IcI:’(z, x)l di,i(z, x), where z Mr(x ),
iA

we now state the following proposition.
PROPOSITION 4. For sufficiently small positive 6, e satisfying Proposition 3, there

exists > 0 such that

lip <= x)l [or all x  Xo,

Proof. The proot is essentially that given in [12].
PROPOSITION 5. For sufficiently small 6, e, there exists > 0 such that

M (x + M(x) <-_ x)[

for all

xeD(xo, 6, e).

Proof. By Taylor’s theorem and the fact that the ’s are assumed twice continuously
ditterentiable in the neighborhood of the optimum we deduce that there exists a
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continuous aj(x)such that

(z +, x +)= (z, x)+ v(z, x)+ a(x).
Furthermore, from the definition of the vertical step,

(4.17) (z +,x +5)= gra(x)g, j E(x, e).

Noting, from Proposition 2, that A (x0, 0)= E(xo, 0) it follows that for sufficiently
small e, and 0,

(4.18) A=E(x,e)
for all x D(xo, , e). From the Kuhn-Tucker conditions (Assumption 1)

1

0

(4.19) Y. u,V&,(Zo, Xo)= u, > O.
iA

0

Again, using Taylor’s theorem we have that

(4.20) V&’(z’x)=V&i(z’x)+
G(x)(xo-x)

where G(x) is continuous, and Zo Mt(xo). Now, substituting (4.20) into (4.19) we
obtain

-1

E u, V(z, x)+
,,o C,(x )(xo- x )

Hence,

(4.21) E u,[VChz, x)v +(xo-x)C,(x)e] v.
iA

Using the definition of v and (4.18) we see that (4.21) simplifies to

Vl E Uii(Z,X)+ E Ui(Xo--X)TCi(x)"iA leA

In addition, using the definition of , we see that (4.17) becomes

(4.22) ,.(x+e)-z=-E u,,(z,x)+ E u,(xo-x)C,(x)e-ea(x)e
iA iA

for all ] E(x, e).
Denoting

sup
D(xo,8,e)

F sup liai (x)ll,
xeD(xo,&e)
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and

Umin min (u)
iA

[Umin > 0 by Assumption

Hence

(4.24)

where/ Umin/4.

M(x + O)-M(x)<= -#l(z, x)l,

PROPOSITION 6. Let {x}l be a sequence with the following properties"

(4.25a)

(4.25)

(4.25c)

Then

(4.26)

Proof. (See [12].)
COROLLARY 6.1. Under the assumption ofProposition 6 we have that

(4.27) lim IIq (x,)ll ][q(

Proof. (The proof is essentially the same as [12].)

Xi R",

A (xi)= constant set,

lim x g.

A, say,

A
_
A’(g, e)= A(x, e)l.JS(x, e).

we see that (4.22) becomes

o

We now make use of Proposition 4 to obtain

fl’(X +)--Z [--Umin+ ’llXo--Xll( Ui’i)] I((Z’ X)Iq’’21t(Z’

Furthermore, if we assume that

Umin<
2iaO Uii)’

it follows that, for x D(xo, & e),

(4.23) (x +O)-z< -Umil(z,x)l+l(z,x)l=r,, (x, ).
2

Since I[ is continuous and I(Zo, Xo)l 0 it is clear that by choosing 8 > 0 suciently
small we can assume that

Umin W[(z, x)l 42 -i for x B(x0, 8).

Consequently we have, using (4.23),

Umin,
(x +)- z -lz, x)l, i (x, ).
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PROPOSITION 7. For a compact W R", sufficiently small e and x W,

(4.28) q(x, e) 0 implies x C(A o, e ).

Proo[. Assume (4.28) holds for no e > 0. Hence, there exists a sequence {(x, e)}_a
such that

(4.29a) q(x, e)= 0,

(4.29b) lira x W,

(4.29c) lim e 0

(4.29d)

and

(4.29e)

Xi W

A (xi, ei) const.

E(xi, ei)Ao.

We first show that $ Xo. For suppose otherwise. Choose e > 0 such that

(4.30) A (, e)= A (, 0).

(It is always possible since there are only a finite number of functions, /, under
consideration). From (4.29c)we have that

(4.31) A(xi, ei)A(xi, e)

for sufficiently large i.
Thus (4.29a) implies that

(4.32) q(xi, e )= 0

which with Corollary 6.1 gives

(4.33) q(g, e)=0.

Furthermore, in view of (4.30),

(4.34) q(g, 0)= 0

contradicting Theorem 1.
Now, recalling the definition of the q’s and that q is the projection of e on the

orthogonal complement of the space spanned by the Vb’s we have that

(4.35) 0=

(4.36) 1= Y’. h and hi->0,

However, Proposition 2 ensures that

(4.37) A= E(xo, O)

for sufficiently large i, and, using (4.29b) we see that

(4.38) A __. A o.
Consequently, (4.35) and (4.36) may be replaced by

(4.39)
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(4.40) 1 jaO Aj,

where ,j 0,/" A\A, Ai => 0,/" A. But, then in view of the continuity of the 7’s and
(4.29b) we contradict our strict complementarity assumption, unless A A, con-
tradicting (4.29d) and (4.29e).

PROPOSITION 8. Under the assumption o)Proposition 5, h (.) is continuous in Xo.
Proof. Let us assume otherwise. As a consequence of Theorem 1 below we have

that h(xo)= 0. Therefore there exists {xi}i_l and sx > 0 such that

(4.41) lim xi Xo,

(4.42)

Since h (x) is bounded we can additionally assume that

lim h (xi ) h.(4.43)

But, in view of Proposition 1, (4.2), we have that

(4.44) Mr(x + h(x))-Mr(x) <--ll(x)ll=
which together with the continuity of M;, (4.41) and (4.42) implies that

(4.45) Mr(xo + h)-Mr(xo) <- 0

contradicting the assumption that Xo is a strong minimum ofMs. Hence our proposition
is proved.

Our final proposition investigates the asymptotic properties of q.
PROPOSIa’ION 9. For arbitrary compact Wc R and sufficiently small positive

and e,

(4.46) inf [Iq(x, )11>0.
WD(xo,5,e

Proo]’. See 12].
THEOREM 1. Let the functions fi, [M], be continuously differentiable in a

neighborhood OfXo. Furthermore, letAssumptions 1 and 2 above hold. Then, for convex
and for a compact W

_
R" a necessary and sufficient condition for

(4.47)

is that

(4.48)

x W and P(x, O)e=O

X --X0.

Proof o]’ Theorem 1. We first prove necessity. If x Xo, then, according to the
Kuhn-Tucker conditions along with the strict complementarity assumptions we have
that

k

(4.49) uV/,j (Xo) 0,

k

(4.50) ui 1,
j=l

(4.51) ui > 0, /’= 1, 2,...,k
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where

(4.52) E(xo, 0)= {ix, i2,’’’, i}.

We will now show that

(4.53) E(Xo, 0) _c A (x0, 0).

Let us assume that (4.53) is false. So there is < m such that for 15-/" <- k, ii A (x0, 0)
and for 1 -< ] < l, i, e A (Xo, 0). However, as a consequence of the algorithm we thereby
know that

(4.54) [V&(Zo, Xo)]rP’-(xo)e <= O, <- ] <= k.

Using (4.49) and (4.50) and remembering that Pt-*(xo)e is orthogonal to allV(Zo, xo)
for 1 -] < we obtain

k

(4.55) e(t-)(xo)e Y uiP(-)(Xo)V,.
1=1

Since P(-)(Xo) is an orthogonal projection

(4.56) prp(’-)(xo)q [P(’-)(xo)p]rp(t-)(xo)q
for any vectors p and q.

Now, from (4.54), (4.55) and (4.56) we obtain

k

(4.57) ., u,_ali= >= 0 for 15- jl <= k
j2=l

where

(4.58) ai,i= [P(t-X(Xo)Vi,,(Zo, Xo)]Tp(t-X)(Xo)V4)ii=.
But by our strict complementarity assumption V,(l <- ] <= k) are linearly independent
so in view of (4.58)the matrix

a [a,=], _-< h, j2 --< k,
is positive definite [cf. Gram determinant] contradicting (4.51).

It now follows immediately from the definition of the algorithm that

P(xo) Pt-)(Xo)
is such that

(4.59) P(xo)V& 0 for all ii A (Xo, 0).

Consequently (4.49), (4.50) and (4.53) imply that

P(xo)e 0

which proves the necessity part. We will now prove sufficiency.
First let us notice that since Pe is the projection of e on to the hyperplane

orthogonal to the one spanned by Vb, , V4,, (4.47) implies that

(4.60) e A 1Vix "q" l 2V(i:z dr’’ t" AkVik
where A (Xo, 0) {i, ik}.

We shall now prove that all the a’s are positive.
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Suppose otherwise; then there exists < k say, such that for =<] =< k,

(4.61) h-<0.
But from the algorithm it follows that

(4.62) -[Vbi]rP(-le < 0,

and

(4.63) ,.,(t-lr "V4i=0,
Now, using (4.51), (4.56), (4.60) and (4.63) we see that

k

(4.64) E hj2ahi2 -[VciI]rPt-e,

But the (4.62) implies that

k

(4.65) hj2czh.j < 0
i:=l

l<-]_k,

]=1,..., (/- 1).

< =<,k.

Let e and ;’ satisfy all the requirements of the propositions stated above and
additionally let t5 > 0 be small enough such that

(4.67) x B(x0, 6) implies that x + h (x) B (Xo, ’).

That (4.67) is possible follows from Proposition 8.
We now show that under these circumstances

(4.68) w(x)= h(x)+(x), x eD(xo, , e).

To verify (4.68) let us note that from Proposition 5 [(4.19)]

Mt(x +h +)-Mt(x +h)-/l(z +Bl, X +h)l
where

z + Mr(x + h ).

Consequently, in view of (4.66b), (4.68) holds.
Furthermore (4.68), Proposition 1 [(4.2)] and Proposition 5 [(4.19)] give the

if Mr(x + v + h ) <M(x + h ),
(4.66b) w=

h otherwise.

(4.66a) Mr(x + w) <- Mr(x + h ), x R ",
where

which with (4.61) contradicts the fact that [ahi], <= h, j2 <= k, is positive definite. But
(4.60) with A’s positive are sufficient conditions for a minimax optimum and so our
theorem is proved.

We now state and prove Theorem 2.
THEOREM 2. Assume [, [M], are convex functions that are twice differentiable

and thatXo is the strong minimum ofMr(x) and that the strict complementarity assumption
is satisfied. Then for any compact W

_
R and sufficiently small positive e a sequence

{x(e)}
_
W, generated by the algorithm above is convergent to Xo,

Proof. Let us first notice that
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following:

Mf(x + w) Mf(x ) Mf(x + h +) Mf(x + )+Mf(x + ) Mf(x )
(4.69)

=<-t?(x) for x e D(xo, 8, e),

where (x)= T ll4(x / t )ll= x)l.
The function t has the following properties for x D(xo, 8, e):

(4.70a) t?(x)==. 0,

(4.70b) t?(x) 0 implies x Xo,

(4.70c) t?(. ) is continuous.

Property (4.70a) is obvious, (4.70b) follows since t?(x)= 0 implies that (z, x)= 0 and
q(x + t)= 0 which with Theorem 1 gives x + t Xo which from Proposition 5 and our
assumption of a unique minimax solution gives x Xo. The continuity of follows
directly from Corollary 3.1.

Now, let Wc R" be a compact set, a R" and , e satisfy the requirements of
Proposition 9 and (4.69) with respect to W.

Let {xi(e)}i_>o be the sequence generated by the above algorithm with xl(e) a and
xi(e) e W for >= 1.

We first note that

(4.71) Mr(x,+)<.Mt(x,) for all => 1.

Now, let us assume that our theorem is false. Thus, there exists a convergent
subsequence {x}i such that

(4.72) lim x 2 x0

and

(4.73a) {x}-_
_
WD(xo, 8, e)

or

(4.73b) {xj}jl
_
D(xo, , e).

Obviously, in view of (4.71),

(4.74) Mf(x+) <= Mf(x+ ).

If case (4.73a) holds it follows from Propositions 1 and 7 that for some : > 0,

(4.75) Mf(xi/1)- Mf(xi+ ) <-_. -j.

In case (4.73b) holds, obviously, in view of (4.72),

2D(xo, 6, e).

Therefore (4.70b) and (4.72) imply that

Using (4.70c) and (4.72) we deduce that there exists z> 0 and ]o such that

(4.76) (xj) => 2 for ] =>1o.
However, (4.76) combined with (4.69) gives

(4.77) Mf(x+,)- Mt,(x,) <= -.
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Now, putting s3 min (s1, 2), we obtain from (4.74), (4.75) and (4.77),

M:(x,+,)-M:(x,,)<= -3 for ] >=]o.

In addition, summation of the above inequality leads to

M(x,, ) M6x ,,o) <- -(j
for ] => ]o, which in view of (4.5 3) implies that

-oo

which contradicts the continuity of Mr and completes the proof.
This completes the theoretical results.

5. Examples and numerical results. Five examples are going to be considered so as
to illustrate the usefulness of this approach to nonlinear minimax optimization. The
value of e was fixed at O. 1 with a facility for reduction if results indicated that e was too
large (see the algorithm above).

5.1. Example 1 (see [7]). This is the example given in the introduction. When
xl x2 1, fx f2 f3, but this point is not a minimax optimum because the necessary
conditions for a minimax optimum are not satisfied. The minimax optimum is defined by
the functions fl and f2 at x 1.13904, x2--0.89956 where f =f2 1.95222 and
f3 1.57408. Figure 1 shows contours of Mr(x) for this problem.

Starting at the point (1.,-0.1) the algorithm generated the sequence of points
shown in Table 1. From this table one can see the usefulness of the vertical step and that
of the linear search. In Fig. 1 we show the path taken by the algorithm.

TABLE
ResultsforExample starting atxl 1, X -0.1.

Number of
Number of function
iterations evaluations Mr(x)

0 1. -0.1 5.41
2 1.344212 0.622844 2.,326617

2 3 1.375465 0.688476 2.116580
3 6 1.222938 0.843783 2.002479
4 9 1.174607 0.884782 1.992538
5 12 1.158160 0.897937 1.991438
5 13 1.152752 0.888806 1.952899
6 15 1.136205 0.901962 1.952802
6 16 1.136107 0.901847 1,952247
7 18 1.138047 0.900336 1.952232
7 19 1.138047 0.900335 1.952227
8 21 1.138702 0,899822 1.952225

5.2. Example 2 (see [7]). Minimize the maximum of the following three functions"

fl(X)=XI’X,
X,

2fz(x) (2 x)2+(2 2),

f3(x) = 2 exp (-xl + x2).
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The optimum minimax value of 2 occurs at x x2 --1. Figure 2 shows contours of
Mr(x ) for this problem. Starting at the point (1.,-0.1) the algorithm generated the
sequence of points shown in Table 2. It is important to note that the algorithm took 6
iterations and only 8 function evaluations to produce very accurate results. This means
that the linear search algorithm works extremely well in this case. In Figure 2 we show
the path taken by the algorithm from which it can be seen that the algorithm follows
ridges.

X2

1.9

f2

minimum

FIG. 2. Contours of Mr(x) for Example 2.

TABLE 2
ResultsforExample 2 starting atxl 1, x --0.1.

Number of
iterations

Number of
function

evaluations

1. --0.1 5.41
1.305555 0.541666 3.198639
1.250841 0.535008 2.734218
1.046349 1.011812 2.222451
1.005593 0.993813 2.01,0226
1.003805 0.991570 2.009336
1.004877 0.992656 2.005017
1.000008 1.000019 2.000071
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The number of function equations are cumulative, i.e. iteration 6, for example,
took 1 function evaluation.

The rest of the examples are well known nonlinear programming problems
which can be solved as minimax problems by using the Bandler and Charalambous
approach [4].

Consider the following nonlinear programming problem:

subject to

minimize F(x )

gi(x)>-_O, i=2,3,... ,m.

Consider the following minimax function"

where

Mt(x) max (x)
lim

f(x)=F(x),

(x) F(x)- a,gi (x), 2 <= <- m,

ai>O, 2<-i < m,

Bandler and Charalambous [4] proved that for sufficiently large a the optimum of the
minimax function coincides with that of the nonlinear programming problem. (See also
Zangwill [2 1].)

5.3. Rosen-Suzuki problem (see [17]). For the Rosen-Suzuki problem

F(x)= xx2 +x22 + 2x3 +x]- 5xl- 5Xz- 21x3 + 7x4,

g2(x ) -X2 x:
2 X 23 X 24 ,X -- X2 X3 -. X4 4- 8

ga(x) -x-2x-x]- 2X] + xl + x,) + 10,

g4(x) --xZl--X22--X-- 2Xl + X2 4- X4 4- 5.

The solution is

We used

F=-44, xx=0, xz=l, x3=2, x4=-l.

at2 3 iX4 10.

Table 3 shows the progress of the algorithm. After 16 iterations our unknowns have the
following values:

xx 1.5883 x 10-4, x2 0.99869,

x3 2.00049, x4 =-0.999677.

The same comments as in the previous examples hold.

5.4. Example 4 (see [1]). In this case

F(x ) (xx 10)24- 5(x2 12)2 + x + 3(x4 11 )2
+ lOx+7X+X--4X6X7-- 10X6-- 8X7



SOLVING THE MINIMAX FROBLEM 183

TABLE 3
ResultsforRosen-Suzukiproblem starting at

x! x2 x3 x4 O.

Number of
Number of function
iterations evaluations Mt,(x)

0 0.
5 -24.5475

2 6 -31.7628
3 7 -40.6113
4 8 -41.1357
5 9 -41.3358
6 10 -43.6286
7 11 -43.7708
8 12 -43.8410
9 16 -43.9141

10 20 -43.9352
11 22 -43.9374
12 25 -43.9383
13 27 -43.93855
14 30 -43.9386
14 31 -43.99978
15 33 -43.99984
16 36 -43.99995
16 37 -43.99999

subject to

We used

The solution is

g2(x) -2x- 3 "x2-x3-4x-5x5+127,
g3(x) -7xl- 3x2-10x- x4 +x5+ 282,

g4(x) -23x-x-6x+ 8x7+ 196,

gs(x) -4x-x+ 3xlx2-2x23 5x6+ llx7.

a2=a3=a4=a5= 10.

F=680.6301, x =2.3305, x.= 1.9514,

x3 =-0.47754, x4= 4.3657, xs =-0.62449,

x6= 1.0381, x7 1.5942.

Table 4 shows the progress of the algorithm. After 150 function evaluations our
algorithm gave the solution:

x 2.3312, x 1.95130, x3 =-0.47136,

x,=4.3655, xs=-0.62450, x6=1.0383,

x7 1.5941.
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TABLE 4
Results]’or Wongproblem starting at

X1 X2 X6 3, x3 x7 O, X4 5, X 1.

Number of
Number of function
iterations evaluations Mr(x)

0
2

2 3
3 4
4 6
5 10
6 13
7 14
8 15

14 30
20 39
26 58
38 103
48 134
52 150

2,285.
1,552.62
1,142.24
1,066.90
1.063.56
768.026
739.710
733.512
728.472
687.677
681.760
680.796
680.636
680.6304
680.6301

5.5. Coiville’s Test Problem 2 (see [10]). In this case

10 5 5 5
3F(x)= E bixs+i-E E cijxixi -2 2 dixi

i=1 i=1 i= /=1

subject to the constraints

1-15, x_->O,
10 5

15-20, Y. aixs+i <= e + 2 cijx + 3dye,
i=1 i=1

i=1,2,..., 15,

j=1,2,... ,5,

where aii, ci, b, di, ej are given in Table 5. The solution is

F= 32.34868 at (0.3002, 0.3334, 0.4002,

0.4281, 0.2240, 0., 0., 5.1710, 0., 3.0616,

11.8348, 0., 0., 0.1030, 0.).

We used O2 a3 azl 10 and we scaled F by 80. Table 6 shows the progress of
the algorithm. After 281 function evaluations our algorithm gave the solution:

(0.3033, 0.3323, 0.4037, 0.4253, 0.2241,

0., 0., 5.1289, 0., 3.0682, 11.7685, 0., 0., 0.0911, 0.),
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TABLE 5

2 4

-15 -27 -36 -18 -12

30 -20 -10 32 -10
2 -20 39 -6 -31 32
3 -10 -6 10 -6 -10
4 32 -31 -6 39 -20
5 -10 32 -10 -20 30

4 8 10 2 b

1 -16 2 0 1 0
2 0 -2 0 0.4 2
3 -3.5 0 2 0 0
4 0 -2 0 -4 -1
5 0 -9 -2 -2.8
6 2 0 -4 0 0
7 -1 -1 -1 -1 -1
8 -1 -2 -3 -2 -1
9 .2 3 4 5
10

-40
-2
-.25
-4
-4
-1
-40
-60

5

TABLE 6
Results/’or Colville’s TestProblem 2 starting at

xi 0.0001, # 12, x12 =60.0.

Number of
Number of function
iterations evaluations Mr(x)

0 2,400.01
2 2,400.00

2 3 1,702.18
3 4 1,486.66

14 15 1,414.37
30 34 789.049
65 69 42.7118
98 104 36.4468
123 134 33.8278
148 167 32.7783
165 190 32.4524
187 226 32.3572
205 281 32.3490

6. Conclusions. It is the opinion of the authors that the results do indicate that the
method above is both of theoretical and practical interest (see also [8]). The results show
that the present algorithm is very efficient and it is probably one of the most efficient
algorithms for nonlinear minimax optimization. It is important to note that if the
functions are linear then the minimax function will be piecewise linear and the present
algorithm will take consideration of this fact. Among the advantages is the well defined
stopping criteria afforded by Theorem I and the way in which the linear search is carried
out. To the authors knowledge it is the first time a special linear search was used to
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minimize minimax functions. Furthermore, by virtue of the way the search direction is
determined, the method tends to follow ridges. Finally, no special treatment is required
during the later stages of convergence, since due to the vertical component we are able
to obtain a sequence of points that converge directly to the desired optimum.

It should be pointed out that our horizontal component is the same as the direction
of search at each iteration of the algorithm proposed, by Bandler, Srinivasan and
Charalambous [5] and that of Zangwill [20], but in their papers they have not
considered the vertical step which means that their algorithm will only reach the
optimum within a supplied tolerance and final convergence in their case is very difficult.
Furthermore, the former take the linear programming approach whereas we use
orthogonal projections. The connections between these two approaches is well known.
As is noted in [6] for the linear case, the addition of constraints to problem P can be
handled in a natural way. This is an immediate consequence of the fact that we are using
projections.

Finally, some further avenues of research suggested by this paper include the
following.

Firstly, it would be desirable to prove some results about rates of convergence of
the above algorithm. It is the feeling of the authors that a super-linear convergence rate
can be proved and they hope to publish results along these lines in a subsequent paper.

Secondly, it is suggested that optimization problems of a similar nature, for
example, standard nonlinear programming problems with an objective function that is
continuous but has discontinuous derivatives, might be solved by an analogous method.

Acknowledgment. The authors are indebted to Professor Richard Bartels of The
Johns Hopkins University for bringing to their attention the work of Zangwill refer-
enced in this paper. In addition his lucid comments were largely responsible for erasing,
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