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A STRUCTURE-EXPLOITING ALGORITHM FOR NONLINEAR
MINIMAX PROBLEMS*

ANDREW R. CONNt AND YUYING LI$

Abstract. In this paper, some basic concepts are generalised which characterise the best linear
Chebyshev approximation in one variable to general nonlinear minimax problems. A new method for
solving a nonlinear minimax problem is presented, which exploits the structure and characterisation of
the solution whenever possible. The algorithm is globally convergent with a superlinear convergence
rate. Numerical results indicate the efficacy of the new method.
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1. Introduction. We want to solve a discrete nonlinear minimax problem, which
is written as

(1.1) min max f(x),
a:E{R iEM

where M is a finite index set. This is equivalent to finding the minimum value for the
maximum function (x) maxieM f/(x).

It is clear that a discrete Chebyshev problem

(1.2) min max Ik(x)[
xE{R l<i<m

which is a major class of discrete minimax problems, could be regarded as a special
case of a general minimax problem (1.1) with

M-{1,2,...,m,m+l,..-,2m}, f+m(X)=-f(x), i-1,...,m.

For simplicity, we describe our algorithm mainly in terms of the discrete Chebyshev
problem (1.2) written in the form of (1.1). The extensions required for the general
problem (1.1) are mentioned. In this paper, we are content to find a local minimum
of (1.1) and we assume that a local minimum for (1.1) always exists. We also assume
that each fi(x) is twice continuously differentiable.

Numerical methods for the discrete nonlinear Chebyshev/minimax problem are
less prolific than for the linear problem. It is well known that the maximum func-
tion, (x) maxiM f/(x), is not differentiable at kinks that arise whenever fi(x)
fj(x), i,j E M, j. Therefore, traditional gradient-type methods cannot be
applied directly.

The existing methods are essentially based on successive linear programming or
nonlinear programming techniques applied to an equivalent nonlinear programming
problem. Examples include [1], [13], [20], [22], [23], [24], [27], [29], [30], [36], and [38].
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The classical Chebyshev theory provides us with characterisations for the best
linear Chebyshev approximation. These properties uniquely determine a solution in
many instances and thus requiring approximations with these special features is likely
to result in a more efficient technique. Indeed, such has been the experience with clas-
sical Remez algorithms for best continuous/discrete linear Chebyshev approximation
(see, for example, [35]).

In this paper, we first generalise the characterisation of the best linear Chebyshev
approximation to a solution of a nonlinear minimax problem. The generalisation is
useful computationally because we can force the approximate solutions to have these
properties and thus expedite the solution-finding process. This is particularly bene-
ficial for those problems arising from the discretisation of continuous approximation
problems.

In developing our algorithm, we determine a suitable descent direction based
on the structure of a solution (which consists of functions in general that are not
necessarily close to the current maximum function). The new approach proposed is
different from the existing methods in that one attempts to use the structure and
characterisation of a solution of the minimax problem explicitly.

For clarity and brevity, we omit the proofs of some theorems. The interested
reader is referred to [26] for details.

2. Structure of solutions to minimax problems. The continuous Chebyshev
approximation problem on an interval [a, b] can be described as

min max If() (x,)l,
xE tE[a,b]

where f(t)and (x,t) are given functions.
nAssume (x, t) -i=1 xii(t). It is well known that, under the naar condition,

the absolute error function If(t)- -= xii(t)l of the best linear Chebyshev approx-
imation achieves the maximum value on n + 1 points with the signs of the errors
alternating [31]. Any ordered n q- 1 distinct points have been termed a reference and
an approximation with the errors alternating signs on a reference has been called a

reference function [35]. If a reference function has the same magnitude of errors on
the reference, it is further called a levelled reference function.

The famous Remez algorithm finds the best Chebyshev approximation by con-
structing levelled reference functions at each step until a levelled reference function
with the maximum error is obtained. For discrete linear Chebyshev approximations,
the concept of reference and reference function has proven to be useful in developing
computationally efficient algorithms (e.g., [4] and [6]).

Under some conditions, If(t)-(x, t)l of the best nonlinear Chebyshev approxima-
tion achieves the maximum value at k points with the signs of the errors alternating
[32]. Since the conditions are rather restrictive and k is not known a priori, there
seems to be no computational algorithm that attempts to exploit the structure of the
solution for a nonlinear Chebyshev problem.

In this section, we introduce the concepts of cadre and reference set for nonlinear
minimax problems. They are generalisations of the corresponding concepts for linear
Chebyshev problems.

DEFINITION 2.1. The vector set C {Vfi }=0 is called a cadre if and only if:
1. rank([Vfo,--., Vf]) 1;
2. for any {Vfjl,... Vfjz} c C, rank([Vfjl,..., Vfjz])= 1.
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This term was used by Descloux [18] to describe a linear Chebyshev solution
when the Haar condition is not satisfied. A cadre can be equivalently defined by the
following lemma.

LEMMA 2.2. C {Vfij }=0 is a cadre if and only if rank(C) and there exist
multipliers {hi } such that

(2.1) EAJVfiJ =0 and ikj O, j-O,...,1.
j=0

We refer to {Aj}, normahsed by Ej:0 AJ 1, if E:0 AJ 0 and o 1 other-
wise, as cadre multipliers. The relation (2.1) is also called the characteristic relation
(cf. [31]).

Cadre multipliers are different from the Lagrangian multipliers used in optimiza-
tion. The Lagrangian multipliers are usually associated with a stationary point and,
under certain nondegeneracy assumptions, the nonzero multipliers are associated only
with activities (see the following page for a definition of this term and the term e-

active). The cadre multipliers, however, are defined for any cadre and the functions
in a cadre are not necessarily e-active. Hence, we deliberately use the term cadre mul-
tipliers instead of just multipliers in order to differentiate them from the Lagrangian
multipliers.

DEFINITION 2.3. The functions {fi(x)}_o are said to be locally forming a

reference set of a minimax problem (1.1) if C {Vfi }j=o is a cadre such that

1. The cadre multipliers {Aj }j=o satisfy Aj > 0, j 0,...,1;
2. The functions {f(x)}j=o all have the same sign.

The reference set is further called a levelled reference set if the value of each function
is the same, viz.,

(x) (x) for any ij, ik E C.

From the optimality conditions of (1.2) (e.g., [37]), we obtain an equivalent char-
acterisation for a local minimum of (1.2) that relates to the structure of the best linear
Chebyshev approximation.

THEOREM 2.4. Suppose x* is a local minimum for a minimax problem (1.1).
Then, there exists a set of l+ 1 functions {f (x)}=0, which is a levelled reference
set at x* on the cadre C {Vfj (x*)}:0 with the maximum deviation.

A reference set is a generalisation of the alternating sign property of a best Cheby-
shev approximation. Our experience with the numerical methods for linear l prob-
lems [6] suggests that it is very important to exploit computationally the above prop-
erties of a solution. The algorithm proposed in this paper is developed under this
principle.

3. The model algorithm. The proposed algorithm is a descent method with
a line search. The special features of the suggested algorithm, however, are that the
search directions always decrease the maximum function and attempt to enforce the
characterisation of a solution at the same time. Since a levelled reference set with
the maximum deviation characterises a solution to a minimax problem, we attempt
to compute the solution by constructing approximate solutions with such properties.
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Assume )/Y {i0,il,"" ,it} is an index set and all the functions in )/Y form a
reference set that is not levelled. Denote

A [Vfio Vfil Vfio Vfi,.],
[f,o (x) (x), f,o (x) (x), f,o (x) (x)],

and i0 E jr(x, 0). Here, A(x, 0) denotes the indices of the active functions, which
are the functions achieving the maximum value at the current point x. In other
words, 4(x, 0) {i e M[(x) f(x)}. More generally, we define the set of e-active
functions jr(x, e) to be the set of functions that achieve the maximum deviation within
a tolerance of e, a small positive constant that may be reduced by the algorithm. That
is, A(x, ) {i e MI(x)- f(x) <_ e}.

From the following two lemmas, it is possible to determine descent directions
that attempt to construct a levelled reference set in the neighbourhood of a cadre or
reference set.

LEMMA 3.1. Suppose the functions in )/Y form a reference set that includes all
the current active functions. Then, the direction defined from )/Y by

(3.1) v -A(ATA)-le(x)

is a descent direction for all the active functions provided the reference set is not
levelled.

In [29], a similar result, that the vertical direction v is a descent direction when
the Lagrangian multipliers are nonnegative, is stated.

If a unit step along v is taken, (I)(x) + ATv 0. Thus the functions in 14; would
all have the same value as the representative function, a function chosen from ,4(x, e)
at the start of the iteration, up to first order.

LEMMA 3.2. Suppose C {Vfio, Vfl ,..., Vfi } is a nonreference set cadre with
cadre multipliers {Aj }j=o summing to one and fio (x) achieves the current maximum
deviation for (1.1). Then, the direction v defined on 14; {i0, il,’", it} by

(3.2) [Vfi aocrjVfij]Tv --(o croajfij), ij e /V, ij 7 i0, Cry sgn(f),

decreases all the active functions, assuming Vi; includes all the active functions at x.
If {fi }0 are linear functions at x +v, {fi}o form a reference set. Thus, whenever

the f’s do not constitute a reference set, moving along v, which is defined by (3.2),

[Vf aoayVf]Tv --(f cr0ayf), ij )/Y, ij io,

attempts to construct such a set.
We build up cadres using the concept of working sets. A working set is a func-

tion index set that includes all the indices of the current maximum functions. We
emphasize, however, that the working set W is not generally an active set. In 5, we

describe the details of setting up a working set.
The search direction is determined from the working set. If a cadre has not

been located, in addition to decreasing the maximum function, the search direction
is constructed to level the functions in the working set, when this is possible. The
motivation behind this levelling comes from the fact that the structure of the solution
requires the error curve to be levelled on the extreme points.

The suggested model algorithm is now outlined.
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MODEL ALGORITHM
Step 1. Suppose an initial point x is given. Set k -- 0.
Step 2. [Set up a working set]

The new working set Wk is determined. Check if there is a cadre Ck

whose indices form a subset of 142k. If there is no such cadre, go to
Step 4.

Step 3. [Construct a levelled reference set]
Check reference set conditions. If the cadre corresponds to a reference
set, compute a descent direction by levelling the reference set. Other-
wise, find a descent direction that attempts to construct a reference
set. Go to Step 5.

Step 4. [Descend and level]
A search direction dk is found that decreases all the e-active functions
and levels the functions in the working set 142k, if possible.

Step 5. [Line search]
A line search is performed on (x) along the direction dk

Xk+l +-- Xk -[- .kkdk; k k + 1.

Step 6. [Termination]
If optimal, stop. Otherwise, go to Step 2.

Step 3 of the model algorithm is one of the major parts in which the character-
isation of the solution is exploited. From (3.1) and (3.2), we can compute a descent
direction when a cadre is located (see also 6). Next, we discuss how to identify cadres
(4), how to construct a working set (5), and how to compute a search direction when
there is no cadre (6). We also present details of the computation, including handling
degeneracy (8).

4. Identifying cadres. Given a set of functions {rio ,’", fi,. }, we discuss whether
there exists a cadre within this set. We divide cadres into two types, depending upon
whether

-.Aj =1 or -.Aj =0,
j=0 j=0

where {/y }j=o are cadre multipliers. The cadre that defines a reference set always
belongs to the first type.

It is straightforward to prove the following lemma.
LEMMA 4.1. Suppose {Vfi Vfi1,..., Vfi Vfi } are linearly independent.

Then, the rank of the vector set {Vfio, Vfil,..., Vfi} is at least 1.
The following lemma gives, under certain assumptions, necessary and sufficient

conditions for the existence of a cadre with the sum of cadre multipliers being zero.
LEMMA 4.2. Suppose A [Vfio -Vfi ,’", Vfio -Vfit_l] is of full rank and that

zTVfio O, where the columns of Z form a basis for the null space of AT. Then,
there exists a cadre C c_ {Vfio, Vfi ,"’, Vfi ) with cadre multipliers summing to zero

if and only if [Vfio Vfi ,..., Vfio Vfi] is rank deficient.
Proof. Suppose C {Vfo,...,VfkE} is a cadre and {k0, kl,...,k} c_ {i0,

il,...,it} with

AjVfk =0, Aj O, Aj O,
j=0 j=0
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Then it is obvious that

(4.1) E Aj (Vfio v/k,) o.
j=0

From (4.1) and the assumption that {Vfio -Vfil,..., Vfio -Vfh_l} are linearly
independent, we know that is E {ko,"" ,k}. Hence, Al 7 0 and we have

1-1

(Vf,o vf,) i (Vfo vf,),
j--1

after padding with zeros if necessary. On the other hand, if we assume that {Vfio

Vfil ,..., Vfi Vfh_ } are linearly independent and {Vfio Vfi ,..., Vfi Vfh_
Vfi -Vfh } are linearly dependent, we have

l--1

Vf,o vf,, (Vf, vf,).
j--1

From Lemma 4.1 and the assumption that A is full rank, we have that

rank({Vfio, Vfi," Vfi,_ }) >_ 1.

Moreover, from zTfio O, and the argument that follows, we can conclude that

(4.3) rank({Vfio, 7fi ,..., 7fil_l} 1.

The above is true because, if {Vfio, 7fi ,’’’, 7fil_l} are linearly dependent, then
there exist {Aj } that are not all zero such that

l-1

,jVf O.
j=o

1--1 l--1If j=0 AJ 0, without loss of generality, we can assume j=o Aj 1.
1-1Ao 1 j=l Aj. Hence

Thus

l-1

Vf,o a(Vf,o vf).
j=l

We conclude that ZTTfio --0, which is a contradiction.
l-1 l-1If -j=o AJ -0, we have o ’j=l Aj. Hence

l-1

(Vf,o vf) o,
j=l

which is again a contradiction to the assumption that A is full rank.
Thus, using (4.2), we obtain

(4.4) EiyVf =0 and
j=o j=o
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Define C { Vfij j 0, j 0,..., u}. Using (4.4),

rank(C) _< ICl- 1.

From (4.3), we know that

rank(C) _> ICI- 1.

Hence

(4.5) rank(C)- ICI- 1.

Moreover,

# 0, Vfi, E C with E J=0"

Using Lemma 2.2, C is a cadre with the sum of the cadre multipliers being zero.
Now, we present a lemma that tells us how to identify cadres with cadre multipliers

summing to one.
LEMMA 4.3. Suppose {Vfio Vfil Vfio Vfi } are linearly independent.

Then there exists a cadre C c_ {Vfio, Vf ,..., Vfh } with cadre multipliers summing
to one if and only if the orthogonal projected gradient, zTVfio, is zero, where

A=[Vfo-Vfil,’..,Vfo-Vfh], zTA O.

Proof.
Lemma 4.1,

Since {Vf Vfil,’", Vfo Vfh } are linearly independent, using

(4.6) rank({Vfio, Vfi ,’’’, Vfil}

__
1.

The orthogonal projection of Vfo on the null space of AT is zTVfio The vector

zTVfo is zero if and only if there exist {Aj }j=o such that

(4.7) AVfio + E AVf, 0, E 1.
j=l j=0

Suppose (4.7) is satisfied. From (4.6) and (4.7), rank({Vfi0, Vfil,’", Vfh}) 1.
Let C {Vfi 0, j 0, 1,-.., 1}. Then, as in the argument for (4.5), C has rank
]tT]- 1. From Lemma 2.2, C is a cadre. Moreover, the sum of the cadre multipliers is
one.

On the other hand, if there is a cadre C c_ {Vfo, Vfi1,..., Vf} with cadre
multipliers summing to one, then, following Lemma 2.2, there exist {Aj } such that
(4.7) holds and then, zTVfio O.

Lemmas 4.2 and 4.3 together enable us to determine whether there exists a cadre.

5. Establishment of the working set. A working set is a function index set,
which is used to determine the current descent direction. Since we want the search
direction to decrease all the e-active functions, this working set 142k is chosen to include
all the e-active functions at the current point x. Nonetheless, there is flexibility in
constructing such a set. We have chosen to build up the working set by selecting the
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functions that determine the maximum function through several iterations. This is
motivated by the fact that it is the extreme points that are important in determining
the best approximation in the Chebyshev sense. Thus we require that

(5.1)

Moreover, the current e-active functions are given priority over the functions in the
old working set when forming the new working set.

However, since adjustment of the functions in the working set is necessary when
the current working set is not approaching a reference set (essentially to account for
the alternating sign property) we use )/;k to denote the set after possible modification
and the rules for changing the set will be described precisely later. Thus, we more
correctly require

(5.2)

Assume, at the kth iteration, that a representative function f(x), which can be
any function ft,(x) such that # E A(xk, e), is selected. Suppose Wk {#, il,..., it}.
The following Jacobian matrix corresponding to Wk,

(5.3) Ak [Vfu Vfil ,’", Vfu Vfi],

is required numerically to have full rank. More specifically, our implementation ac-
counts for this numerical rank. Conceptually it is equivalent to having some tolerance
on the smallest singular value of Ak.

In implementation, we consider the projected gradient zTvft numerically zero if

IIzTvf(xk)II

where the columns of Z are an orthonormal basis for the null space of AkT and T
k is

a small positive constant. Hence, if we identify cadres according to Lemma 4.3, we
have a near cadre.

Since we need the QR decomposition (see, for example, [21, Chap. 6]) of the
matrix Ak in computing the direction (see 6), we build up the current working set
Wk as follows.

CONSTRUCT )/k:
WStep 1. Set Q -- Inn, +-- {#}, where # E A(xk,e). t - O. t-

A(x, ).
Step 2. If4\Wk , go to Steep3. Otherwise, let Q2 be the last n-t

columns of Q and j e Jt\Wk. If IIQ2T(vf,-Vfj)I <_ TO, set

A- ft. \ {j}, go to Step 2. Otherwise, go to Step 4.
Step 3. If )/k- \ Wk , stop. Otherwise, let Q2 be the last n- t columns

of Q. If IIQT2 vfII <_ Tkc, stop. Otherwise choose j e )?k- \ Wk. If

IIQ2T(vf, Vfj)ll <_ T0, set )/k- )/;k- \ {j} and go to Step 3.
Otherwise, continue.

Step 4. Let a Vf Vfj. Add the column a to Ak and update Q and R
accordingly. Set:

Ak-[Ak,a], WkWkU{j}, t-t+l.

Go to Step 2.
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Thus the working set is the largest subset of )/k-lu.A(x, e) (largest in the sense
of the corresponding Jacobian matrix Ak being full rank), where the indices of the
current e-active functions have been entered preferentially.

Following the procedure of constructing a working set, it is clear that, if the
current point is nondegenerate (a current point xk is degenerate when there is a cadre
C {Vfio,Vfl,...,Vfz} such that {io,il,...,i} c A(xk,0)) and there is no cadre
with cadre multipliers summing to zero, the Jacobian corresponding to all the e-active
functions is of full rank. Therefore

A(x, ) _
W.

Moreover, if IIzTWII Tk, where Z Q2 for some Q, then a cadre (or a near cadre)
with cadre multipliers summing to one is found.

6. Determining the search direction. Assume the working set at the current
point xc is

l/Y(Xc)={io,...,it} and #-i0.

The desired search direction, in addition to being one of descent, attempts to enforce
the characterisation of a solution.

Before a cadre with multipliers adding to one is located, we would like the search
direction to decrease all the active functions and level all the functions in the working
set, if possible. It is clear that d x xc, where x attempts to solve

(6.1)

min f(x)
xE

subject to

f,(x) f (x) O, i e V(x),

in the required direction. Note that # is in fact a function of x and we use it to
denote the current representative function as long as no confusion arises.

Dropping the subscript on xc to simplify the description, one may approximate
(6.1) as follows:

(6.2)

min Vfz(x)Td + 1/2dTGd
subject to

(I)(x) + ATd 0,

where

A IV/, (x) Vfl (x), Vf, (x) Vf (x), , Vf, (x) Vf (x)],
(x) [f.t (x) 1 (x), f, (x) 2 (x),..., ft (x) l (x)] T,

and G is a matrix such that zTGz is positive definite, where the columns of Z form
an orthonormal basis for the null space of AT.

When close to a stationary point, ZTGZ is chosen to contain the curvature in-
formation of the functions in the working set in the null space of AT (see 7 for
details).
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From the construction of the working set l/Y(x), we know that A is of full rank.
Following [11], the solution to (6.2) may be written as

d--+v,
+

v -A(ATA)-lO(x).

It has been suggested in [11] that one could ignore the computation of ZTGv
altogether without significantly effecting the rate of convergence. In this case, an
approximate solution to (6.2) can be written as

d=h+v,

where

(6.3)

and

h -ZB--ZT(Vfu (x)),
v -A(ATA)-lO(x),

B ZTGZ.

It is clear that h is in the null space of AT while v is in the range space of A.
The direction in the null space of AT will be called the horizontal direction and the
direction in the range space of A will be called the vertical direction. We also point
out that, given l/Y, Z, and B, the value of h and v is independent of the choice of
(see [15] for details).

We now prove that a nonzero horizontal direction h is a descending direction for
all the functions in

LEMMA 6.1. Assume )/Y is the working set that defines the search direction. As-
sume further that B is positive definite and that there is no cadre C {Vfio, , Vfi, },
with the cadre multipliers summing to one, such that {i0,’",it} c_ 142. Then the
horizontal direction decreases all the functions in 142 equally (up to the first order);
otherwise (i.e., there exists a cadre with the cadre multipliers summing to one), the
horizontal direction h defined from 142 is zero.

Proof. The horizontal direction defined in (6.3) is

h -ZB-IZT(Vf(x)), # io,

where ZTZ In-t, ATZ 0. Since B is positive definite and

hTVfu (x) --(zTvfu (x) )TB-I(zTvfu (x) ),

it follows that

hTVf(x) < 0 iff zTVf : O.

Since there is no cadre C {Vfio,..., Vfi,} with the cadre multipliers summing to
one such that {i0,’", it} c_ l/V, we have, from the definition of 142 and Lemma 4.3,
zTvfu 0 and h is a descent direction for the representative function fu (x).

Furthermore, since

ATh-0 and VfijTh-- vfTh, ij E )42,

https://www.researchgate.net/publication/225229080_Nonlinear_programming_via_an_exact_penalty_function_asymptotic_analysis_Report_CS-80-30?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/225229080_Nonlinear_programming_via_an_exact_penalty_function_asymptotic_analysis_Report_CS-80-30?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
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any function in the working set )/Y will be decreased by the same amount (up to first
order) as the representative function f.

On the other hand, assuming there exists a cadre with cadre multipliers summing
to one, by Lemma 4.3, the result follows.

In conclusion, the horizontal direction h is a projection of the negative gradient of
the representative function onto the null space of AT. It is always a descent direction
as long as )/Y is not a cadre with cadre multipliers summing to one. As a descent
direction, it decreases the functions in the working set by the same amount (up to
first order). The horizontal direction h defined on the cadre with the cadre multipliers
summing to one is always zero.

No cadre. When a cadre is not located, vertical directions are descent directions
in most cases.

Whenever this is the situation, we perform the levelling process, i.e., set the
search direction d v + h. In the case in which the vertical direction is ascending,
the vertical direction is discarded and the horizontal direction alone is taken as the
search direction; specifically, we define

dk hk+vk ifVfTvk<O,(6.4)
[ hk otherwise.

Our numerical experience shows that an ascent vertical direction is a rare occurrence.
This may be explained by the fact that the working set is constructed to approach a
reference set. In the event that ascent does occur, we consider this as an indication
that the working set is not approaching a reference set. This may be caused by some
function, which will eventually not be maximum, being included in )/Yk. Thus the
next working set will not always include all the functions of the current working set;
instead, we define

- W \
{j0}I+-{ 0

I+, if vfTvk >_ 0, where
if A(xk, e) C )/Yk and
otherwise.

A cadre is located. If there exists a cadre with multipliers summing to zero,
the cadre does not correspond to a reference set. In this case, although v corresponds
to levelling, we emphasize decreasing the maximum function. In particular, it is
not necessarily desirable to level functions that do not correspond to a reference set.
Thus we simply take dk hk. (Note that h 0, since there is no cadre with cadre
multipliers summing to one.)

If the functions in the working set, )/Yk, form a (near) reference set, the vertical
direction vk defined by (6.3) attempts to level the functions in the working set while
the horizontal direction hk (again defined by (6.3)--hk 0 only if }/Yk contains an
exact cadre with cadre multipliers summing to one) makes the gradients approach an
exact cadre. From Lemma 3.1, vk is a descent direction. Thus dk hk + vk is a
descent direction (note that hk is a descent direction).

Suppose a cadre with multipliers summing to one has been located within the
working set. Then the vertical direction v defined by (3.2) is a descent direction for
the maximum function. Moreover, we can write (3.2) as

v -( where
(6.6) A [Vf 0-o0-1Vfil ,’", Vf aoalVfi],

If, o-0o-1 ,..., fz 0-00-1f/]T.
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We also modify the working set for the next iteration as follows. The cadre
multipliers associated with the functions in the working set are used to construct
the working set for the next iteration. The functions with positive multipliers are
considered to be the functions which should be in the working set, i.e., the correct
functions. For the functions with negative multipliers, we would like to put its negative
function into the working set. However, because of nonlinearity and the fact that the
cadre and reference set are both local properties, we prefer not to do so. Instead, the
functions with negative multipliers are simply deleted from the working set, since the
functions corresponding to negative multipliers will no longer remain e-active when
the direction v is taken and the multipliers sum to one. Thus we define

\ { < 0 }.
The multipliers are thus used as a means to construct the working set and more than
one function may be removed.

If the functions in the working set are all active and the multipliers sum to one,
moving along the vertical direction initially decreases all the functions with the neg-
ative multipliers faster (up to first order) than those with positive multipliers. This
comes from the following lemma (for the proof, see [14]).

LEMMA 6.2. Suppose V {#, il,’", it} consists only of indices of the currently
active functions. Assume further that C {Vf, Vfi ,..., Vfi } is a cadre. Assume
the direction v is determined from )/Y, as in (3.2). Then:

1. all the active functions with negative multipliers will be decreased more rapidly
than all the other active functions, if the cadre multipliers sum to one, i.e.,

Y5=0 Aj 1;
2. all the active functions are decreased equally (up to first order) provided the

cadre multipliers sum to zero, i.e., =0 AJ 0.
This corresponds to (possibly multiple) dropping of active functions for the equiv-

alent nonlinear programming problem.
Now, consider a general nonlinear minimax problem written as

min max f(x).
xe" ie{ l,...,m}

The search direction can be computed in exactly the same way except that the refer-
ence set, after a cadre has been located, could not be established as before. Since there
exists no negative function of a given function, the vertical direction that determines
which active functions should be dropped is not defined. Thus we now discuss how
the definition of the vertical direction is modified for the general minimax problem.

If the current maximum deviation (xk) is positive, we assume that for any given
f/(x), there exists an imaginary fi+m(X) -f(x). The working set k is chosen
such that

-(xk) < f, (xk) <_ (xk) for any ij E Yk.

Hence locally we can treat the problem as a Chebyshev problem and the vertical
direction, defined as for the Chebyshev problem, is a descent direction.

If the current maximum deviation (x) is nonpositive, we define a descent di-
rection in a way similar to a general nonlinear programming approach [13]. In this
case, if there exists some cadre multiplier that is negative, we simply remove the
corresponding single function from the working set and update the projection matrix
and recompute the search direction from the new projector. Under the assumption of
linear independence, this will give a descent direction [13].
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7. Approximation of the Hessian. In order to obtain a horizontal descent
direction at each iteration Bk, an (n- l) (n- l) matrix is assumed to be sufficiently
positive definite.

For problems whose solutions are on a smooth valley, i.e., the number of active
functions is less than n / 1, the second-order information from the nonlinear active
functions becomes significant for the fast final convergence of the algorithm. When
close to x*, Bk should be a good approximation to the projected Lagrangian Hes-
sian zkTGkzk, where Gk -j=01 jkv2fi(xk), the columns of Zk form a basis for

the null space of AkT, and )jk is an approximation to the Lagrangian multipliers
(which are defined by the first-order optimality conditions of the equivalent nonlinear
programming problem; see, for example, [13] or [38]).

If we assume the second-order sufficiency conditions hold at x* and let Ak be a
good approximation to the cadre multipliers A* at a solution x* (which are equal to the

Lagrangian multipliers at a solution), then the matrix zkTGkzk, for xk sufficiently
close to x*, is positive definite, as follows from continuity arguments.

A first-order method, for example, of [10], solves the problem whose solution is
at a vertex (i.e., with n + 1 linear independent activities) with a fast asymptotic rate
of convergence since, once the correct activities are determined, one is merely using
Newton’s method (or a quasi-Newton method) to determine the unique intersection of
these activities, with the corresponding quadratic (or superlinear) rate of convergence.
First-order directions are usually good descent directions when one is far away from
a stationary point and the computation of a first-order direction is cheaper than a
second-order direction.

We choose to use the first-order direction if it gives a good improvement in the
sense of constructing reference sets. Computationally, we consider that the first-order
direction fails to improve the establishment of reference sets when the working set
has not been changed for consecutive iterations (this may be a result of having the
correct set but in this case it is reasonable to want to accelerate convergence by using
a second-order direction). We arbitrarily set 3 in our implementation. When
failure occurs, we use the second-order information of the representative function or
of all the functions in the working set, depending on how close we are to a stationary
point of the subproblem.

Let ibase denote the number of consecutive iterations for which the working set
remains unchanged. Suppose p is a small positive constant used to measure the
closeness to a stationary point. The matrix Gk may be set up as follows:

(7.1)
if ibase >_ 7 and IlzkTvf.II > ,
if ibase >_ 7 and IlzkTvf.

_
p,

otherwise,

where Ajk is an approximation to the Lagrangian multipliers. We note that when

IIzkTvfII <_ p, it is reasonable to expect a suitable approximation to the Lagrangian
multipliers.

Also, when Gk I, the search direction is a first-order direction.
In our algorithm, however, we use a quasi-Newton method to update an approxi-

mation to the projected Hessian matrix B. Suppose Zk is the orthogonal matrix such
that zkTAk 0, where Ak is defined as in (5.3). In the implementation, we have

used the extended BFGS updating given below. Bk is initialised to be zkTGkzk
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when necessary, where Gk is approximated according to (7.1) by finite differences.
The extended BFGS updating follows:

Bk+l Bk 1
kT k ksr S sr

where

z+lr(z+ x)8r

y Z+1TVf (xk+1) ZkT. V.(x).

Assume Bk is positive definite. Then Bk+l remains positive definite if -kT" kr Yr
0. For unconstrained minimization, this condition is ensured by a line search. For
constrained minimization, however, it cannot be satisfied in general. We have chosen
to skip the update if the above condition is not satisfied.

8. Degeneracy. For a discrete Chebyshev problem, degeneracy handling is an
important part of a useful algorithm. This is because, for example, in the linear case,
it is not unusual for many residuals to achieve the maximum deviation. In this section,
we discuss the handling of degeneracy in our algorithm.

We define a current point xk to be degenerate when there is a cadre C
{Vf,, Vfl ,’", Vf} such that {#, il,..., i} c A(xk, 0).

Denote

Wk {it, i1,.’., il }, Ak [Vf, Vfil,’", Vf Vfi,].

If xk is a degenerate point, the following difficulty may occur. There is more than
one cadre C {Vfv, Vfi,..., Vfi, } satisfying ]/Vk c ,4(xk, 0). Thus it may not be
possible to define a search direction such that it decreases the functions in all the
cadres, although we know how to define a descending direction on one cadre.

If we consider the cadres that correspond to subsets of active functions, then there
can be three types of degenerate points:

Type A. There only exist cadres with cadre multipliers summing to zero;
Type B. There exists a unique cadre and its cadre multipliers sum to one;
Type C. There exists more than one cadre and at least one with cadre multipliers

summing to one.
A point x* is a stationary point if and only if there exists at least one reference

set consisting of active functions only.
We identify cadres by a tolerance of 7"k; the (numerical) degeneracy identified

depends on the tightness of Tk. Thus when degeneracy is encountered, we reduce it
by

(S.1) Tck+l
Tck
2

Numerically, the degeneracy of Type A can only occur when IIZkTVfll>Tkk
and ]/Yk C Jt(xk, e) [15]. For the degenerate points of Type A, there cannot be any
reference set consisting of only the active functions. This is because, for any reference
set, each of the corresponding cadre multipliers is positive and the sum of them is one.
Thus the current point cannot be optimal. For this type of degeneracy, the horizontal
direction h defined on the current working set decreases all the e-active functions, up
to first order, by the same amount.
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Degeneracy of Type B occurs when I]ZkTfttl]_T,kk 4(xk, e) )/Vk, and there
exists zero multipiers [15]. For the degenerate points of Type B, it is possible that
a reference set exists within the active set. If there is such a reference set, then the
current point is already a stationary point. Otherwise, since there exists a unique
cadre, the vertical direction v defined on the cadre by (3.2) attempts to construct a
levelled reference set. Moreover, other maximum functions not in the cadre can also
be decreased at the same time.

If IIZkTVfk <- Tk and )/V C Jt(xk, e), degeneracy of Type C occurs [15]. For the
degenerate points of Type C, we do not know how to determine a descent direction
without additional computation. Following a similar approach to [7] and [17], we solve
the least squares problem:

min
j=0

2

subject to

E0j 1,
j=0

j-0,.-.,1, It=i0.

Assume {A} is the solution to (S.2). Analogous to the proof in [7], dk defined by

J

is a descent direction unless dk 0, in which case we are optimal. Moreover, it is
not difficult to prove that (8.2) can be solved via a least squares problem with only
simple nonnegativity constraints [15].

9. Summary of the algorithm. Now we give a more detailed description of
the algorithm.

Initialization: Suppose an initial point x is given. Set k - 1, e - e0,

Step 1. [QR decomposition]
Find the working set )IVk C_ lYk-1 U 4(xk, e), Jacobian Ak, and its
QR decomposition. Assume the columns of Zk form a basis for the
null space of AkT.
If jt(xk, ) C_ )/Yk and IIzkT’fttll Tkc, go to Step 2;
If .4(xk, ) C_ 14;k and IIzkTvfII > Tk, go to Step 3;
Set e -0.1e;
If ,4(x, e) 14;k and IIzTvfII > T, go to Step 4;
If A(xk, e)

_
)iVk and IIzkTvf,

_ , go to Step 5;
We note that the first and last instances imply that we have a cadre
of type 1 (-j=0 AY 1), and the third implies that we have a cadre

of type 0 (=0 AY 0).
Step 2. [Cadre "found" with iec Ai- 1]

If ]4;k is a reference set, obtain Bk ZkTGkZk, where Gk is defined
as in (7.1); Compute the horizontal direction hk and the vertical

https://www.researchgate.net/publication/225689496_A_note_on_optimality_conditions_for_the_Euclidean_Multifacility_location_problem?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
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Step 3.

Step 4.

Step 5.

Step 6.

direction vk from (6.3); Set the search direction dk hk q-vk and
,__ W.

Otherwise, compute the vertical direction according to (6.6) and set
}/k using (6.7). Modify Tck by (8.1)ir degeneracy is encountered. Set
dk=vk. Go to Step 6.
[Cadre not found]
Obtain Ba as an approximation to ZkTGkZk, where Gk is defined
as in (7.1). Compute the horizontal direction hk and the vertical
direction vk from (6.3). Compute the search direction dk using (6.4).
Set up da according to (6.5). Go to Step 6.
[Cadre "found" with ec 0]
Compute dk _zkzkT k ]k wk. kVf. *- Modify T by (8.1) if
degeneracy is encountered. Go to Step 6.
[More than one cadre and at least one with Yiec Ai 1]
Compute the search direction dk using (8.3). Obtain 1/k from (6.7).
Modify %k by (8.1).
[Line search]
Perform a safeguarded line search. Set k k + 1. If Ildkll2 < Ts
and Wk includes a levelled reference set, stop. Otherwise, go to
Step 1. r

We use quotes around "found" to emphasize that %k is nonzero. The safeguards
and details of the line search are given in [15].

10. Numerical testing. In this section, we compare the new algorithm with
four other typical methods: [8], [13], [23], and [38].

The numerical results are for both minimax problems and discrete Chebyshev
problems, all written in the form:

(10.1) min max fi(x).
xE iEM

The method of Conn. The method of [13] basically applies the active set strategy
of nonlinear programming to the equivalent form of a minimax problem. It is
globally convergent algorithm with a superlinear convergence rate.

At each iteration, an equality-constrained quadratic programming subproblem
is solved to determine the search direction. The subproblem is established upon
all the current e-active functions. The finite difference of the derivatives is used to
approximate the second-order information.

This approach essentially corresponds to the sequential equality-constrained qua-
dratic programming (EQP) approach for nonlinear programming problems, using pro-
jected Hessians. However, once the search direction is determined, the line search is
done directly on the nondifferentiable maximum function

Although there have been relatively fewer numerical results for general nonlinear
minimax problems than for linear problems, to date, the available numerical results
seem to indicate that the following method [23], which is a combination of a linear
programming (LP) approach and a quasi-Newton method for a nonlinear system of
equations, works well on most types of minimax problems.

The method of Hald and Madsen. At each iteration of the first stage, the method
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of [23] requires an exact solution to a constrained linear minimax problem

min max {fi(xk) + Vfi(xk)Td}
de iE[M]

subject to

Ildll _< Ak

in order to find the search direction. A trust region method has been incorporated to
ensure convergence.

If a solution is suspected of going through a smooth valley, i.e., the number of
active functions at the solution is less than n + 1, a switch to a second stage is made.
Then a nonlinear system of equations established by the Kuhn-Tucker conditions for
the active functions is solved by some quasi-Newton method.

The entire Lagrangian Hessian is approximated by some modified secant updates.
It is possible for the maximum (x) to be increased. A return to the first stage might
be necessary.

Under certain conditions, the method of [23] is globally convergent with a quadratic
or superlinear final convergence, depending upon whether a Newton or a quasi-Newton
method is involved.

The first stage of the method essentially corresponds to a sequential linear pro-
gramming approach (SLP), stabilized via a trust region, for nonlinear programming
problems.

The method of Womersley and Fletcher. The method of [38] is similar to that
of [13]. It is a descent method which uses an active set strategy, a nonsmooth line
search, and a quasi-Newton approximation to the projected Hessian of the Lagrangian
function.

Global convergence of the algorithm has been proved. Under certain conditions,
superlinear convergence occurs.

Like that of [13], this method could be considered as belonging to the class of
sequential equality-constrained quadratic programming (EQP) approaches.

The method of Charalambous. In the approach of [8], the original minimax prob-
lem is defined as a modified least pth objective function which under certain conditions
have the same optimum as the original problem.

10.1. Computational costs comparison. At each iteration, the methods of
[13] and [38] and the new algorithm require the computation of a search direction
obtained by solving an equality-constrained quadratic programming (EQP) or an
equality-constrained linear programming (ELP). Comparable line searches have been
used in the methods of Conn and Womersley and Charalambous and Fletcher, whereas
Hald and Madsen used the trust region method. For our new algorithm, determining
a cadre and dropping one function in the working set, when a nonreference set cadre
is found, requires no extra work compared with the methods of [13] and [38]. When
more than one function in the working set is dropped, an equivalent number of QR
updates are required. Since these functions should be dropped and function evaluation
typically is more expensive than a single QR update, in general, this extra work is
well justified. The amount of computation per iteration required by the above three
methods (i.e., [13] and [38] and the new method) is roughly the same.

The amount of work required by each iteration of [8] is roughly the same as
performing a quasi-Newton step for an unconstrained function.

At each iteration of [23], in stage one, a linear programming problem of size at
least n IMI is solved up to optimality. At each iteration of stage two, if it is ever

https://www.researchgate.net/publication/242914049_Acceleration_of_the_Least_pth_Algorithm_for_Minimax_Optimization_with_Engineering_Applications?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/226834744_Combined_LP_and_Quasi-Newton_Methods_for_Minimax_Optimization?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/227116826_An_algorithm_for_composite_nonsmooth_optimization_problems?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==


A STRUCTURE-EXPLOITING ALGORITHM 259

entered, the computation required is similar to the methods of [13] and [38]. However,
in general, most of the iterations are spent in stage one.

Loosely speaking, comparison of computational costs of one iteration of the new
algorithm and that of [23] is similar to the comparison between one iteration of EQP
and IQP methods.

A solution of EQP can be obtained by solving two linear systems of equations.
The size of each linear system is at most n. A solution for IQP, however, usually
requires iterative methods (i.e., inner iterations). Although the number of iterations
are bounded by the number of unknowns and constraints, it is potentially very large
and it could even become prohibitive for a discretised Chebyshev problem because
the number of the constraints of its associated IQP can be much larger than those of
the usual nonlinear programming problems.

Therefore, considering the amount of work required per iteration, the method of
[23] is considerably more expensive than the others.

For nonlinear programming problems, the advantage of the IQP approach com-
pared to EQP, however, has been the iterative search for the correct active set. Like-
wise, one would expect that the advantage of the method of [23] over that of [13] and
[38] and the new algorithm is similar to that of the successive IQP method over the
successive EQP approach for nonlinear programming problems; namely, it can iden-
tify the correct active set faster. This advantage probably is the case for the methods
of [13] and [38]. The new algorithm, however, is not a pure active set method. It
can also identify the correct active set quickly. It achieves this not by an iterative
search but by recognising the structure of the optimum and constructively building
up the reference set. Through exploiting the structure of the Chebyshev problem and
minimax problem, we are able to retain the advantages of both the EQP approach
and the IQP approach.

Finally, we remark that for a degenerate point of Type A or B, there is no extra
work required compared with that for a nondegenerate point. For a degenerate point
of Type C, we must solve a least squares problem with nonnegativity constraints.

10.2. Numerical results. We present some limited numerical results in this
section.

For our numerical testing, the initial parameters required by the algorithm are
set as

Tc
0 0.05, T0 10-12 1/2Ts= 10-5 p=0.5, e0=0.1.

The algorithm terminates when the following three conditions are satisfied"
1. Ildkll2

_
2. ]/yk C_ A(xk, e);
3. A >_ 0, for all j E 142k.

Thus, at termination, there exists, approximately, a levelled reference set with
the maximum deviation.

The test problems include both nonlinear minimax problems and nonlinear Cheby-
shev problems.

We implicitly write a nonlinear Chebyshev problem

min
l<i<m

in the general minimax form

min fi (x),
l<i<2m
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where fi+m(X)= -fi(x), for i= 1,...,m.
Consider the following nonlinear programming problem:

min F(x)

subject to

g(x) > o, 2,-..,m,

and the minimax problem:

min max f(x)
xE <i<m

subject to

fl (x) F(x),
f(x) F(x) aigi(x), 2 <_i <_m,

where

a>_O, 2 <_i <_m.

It is straightforward to show that for sufficiently large ai, the optimum of the minimax
problem coincides with that of the nonlinear programming problem (see [2]).

We have tested some nonlinear programming problems through the above trans-
formation. The a parameter is set as

ai 10.0, 2 _< _< m,

which we know, a priori, is sufficiently large.
We have listed the results for the following minimax testing problems (their ref-

erences are also indicated): Charalambous and Bandler 1 and Charalambous and
Bandler 2 [9], Freudenstein and Roth [36], Colville problem 2 [12], Barrodale, Powell,
and Roberts [5], Wong 1, Wong 2, and Wong 3 [10], Rosen and Suzuki [33], aosenbrock
[34], Transmission Problems [3], Davidon [16], Enzyme [25], E1 Attar [19], Hettich [36],
Bard [36], Watson [36], and Osborne [36]. The starting points used are the same as
that specified in the references.

The results for the problems Davidon, Enzyme, E1 Attar, and Hettich, under the
column [23] are taken from [28], which describes essentially the same method as that
of Hald and Madsen.

In Table 10.1, we report the number of function evaluations required by our new
algorithm under the column NM. For each problem, we have used the nomenclature
of the cited reference. The results of other methods, using a comparable stopping
tolerance, are listed for comparison where available.

The column under the column nact indicates the number of maximum functions
at the solution.

The Rosenbrock problem is degenerate at the solution. The Watson problem is
degenerate at the starting point. The Watson problem with n 20 is also degenerate
at the solution obtained. For the other test problems, numerical degeneracy does not
occur.

The reported results use extended BFGS updates. Similar results were obtained
using exact derivatives. From the limited numerical results, we observe that, compared
with [8], [13], and [38], the overall number of function evaluations required by the new
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TABLE 10.1
Number of function evaluations" BFGS updates.

Problems n m nact I] NM HM CN WF CL

II 1123]l[13]113811[8]
Charalambous & Bandler 1 2 3 2 11 11a 18
Charalambous & Bandler 2 2 3 3 6 11a 8
Freudenstein & Roth 2 2 2 11 15
Colville 2 15 21 12 49 41 275
Barrodale, Powell et al. 5 21 5 21 10
Wongl.1 7 5 3 25 23 106
Wongl.2 7 5 3 33 29 77
Wong2 10 9 7 24 27
Wong3 20 18 13 33 49
Rosen & Suzuki 4 4 3 12 18 64
Rosenbrock 2 2 4 31 21
Transmission 1 6 11 4 52 21 67
Transmission 2 6 11 4 25 46 80
Davidon 4 20 3 20 27
Enzyme 4 22 5 11 18
E1 Attar 6 51 7 25 12
Hettich 4 5 4 11 195
Bard 3 15 3 10 9
Madsen 2 3 2 17 13
Watson6 6 31 7 24 12
Watson20 20 31 39 22 39
Osborne 5 33 5 10 31

12

80 413
38
53 107
37

37

120
318
66

78

The results are obtained by using the codes in [23].
The algorithm stopped because of roundoff error without obtaining a solution.

algorithm is much less. We also recall that the amount of computation per iteration
required by all but [8] to determine the search direction and stepsize are comparable.
If one considers in more detail the number of function evaluations required and the size
and complexity of the matrices being updated it would appear that the new method
is more efficient than [8]. Hence, the new method appears to be more efficient than
that of [8], [13], and [38].

The only method that seems to be competitive with the new algorithm is that
of [23]. The number of function evaluations required by these two methods is com-
parable. However, we recall that the amount of remaining computation required per
iteration demanded by the method of [23] is significantly more than the proposed
method. Thus our new method still appears to be preferable.

We have also tested our new algorithm on a real application problem. The prob-
lem has 80 functions, in terms of a general minimax problem, with 40 variables. The
number of activities at the solution is 39 (out of 80). Our algorithm solved it success-
fully in 50 function evaluations while the method of [23] failed to locate a solution.

11. Summary. The algorithm presented is a globally convergent algorithm with
superlinear convergence rate [26]. It has been developed based on the principle that
a minimax problem, in particular the Chebyshev problem, has special properties that
can be computationally exploited in both the linear and nonlinear cases.

In this paper, we generalise the characterisation for a best linear Chebyshev ap-
proximation to nonlinear minimax problems. These generalisations are implementable
computationally. We then present an algorithm which profits from this exploitation.
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Typically, the algorithm attempts to find a cadre by focusing on the functions
that have achieved maximum values through iterations, i.e., functions in working
sets. These functions are then levelled by vertical directions whenever possible. If
a reference set has been located, it is then levelled by vertical directions (which are
descent directions) and thus a solution is quickly determined. If, however, the cadre
does not correspond to a reference set, a descent direction is then defined as an
attempt to construct one. Since, at any solution, there exists a levelled reference set
with the maximum value, it is clear that the computational procedure is meaningful
and we believe our numerical results indicate its promise.

We point out that it is possible for the Maratos effect to occur for the new
algorithm as presently implemented. However, we have not experienced this effect
during our numerical testing. Moreover, the algorithm can be slightly modified to
guarantee that there is no Maratos effect. One only needs to reevaluate the functions
at the point xk + hk and compute the vertical direction using the updated values when
one is close to a stationary point (see [15] for more details).

Finally, we point out that the algorithm can be extended to solve the constrained
minimax problem (see [15] for more details).

REFERENCES

[1] D. H. ANDERSON AND M. R. OSBORNE, Discrete, nonlinear approximations in polyhedral
norms: A Levenberg-like algorithm, Numer. Math., 28 (1977), pp. 167-170.

[2] J. W. BANDLER AND C. CHARALAMBOUS, Nonlinear programming using minimax techniques,
J. Optim. Theory Appl., 13 (1974), pp. 607-619.

[3] J. W. BANDLER AND P. A. MCDOBALD, Optimization of microwave networks by razor re-

search, IEEE Trans. Microwave Theory Tech., 17 (1969), pp. 552-562.
[4] I. BARRODALE AND C. PHILLIPS, An improved algorithm for discrete Chebychev linear ap-

proximation, in Proc. 4th Manitoba Conference on Numer. Math., University of Manitoba,
Winnipeg, Canada, 1974, pp. 177-190.

[5] I. BARRODALE, M. J. D. POWELL, AND F. D. K. ROBERTS, The differential correction algo-
rithm for rational lo-approximation, SIAM J. Numer. Anal., 7 (1972), pp. 493-504.

[6] R. H. BARTELS, A. R. CONN, AND Y. LI, Primal methods are better than dual methods for
solving overdetermined linear systems in the lo sense?, SIAM J. Numer. Anal., 26 (1989),
pp. 693-726.

[7] S. BUSOVA(A, Handling degeneracy in a nonlinear 11 algorithm, Tech. Report CS-85-34, Uni-
versity of Waterloo, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, 1985.

[8] C. CHARALAMBOUS, Acceleration of the least pth algorithm for minimax optimization, Math.
Programming, 17 (1979), pp. 270-297.

[9] C. CHARALAMBOUS AND J. W. BANDLER, Nonlinear minimax optimisation as a sequence of
least pth optimization with finite values of p, Internat. J. System Sci., 7 (1976), pp. 377-394.

[10] C. CHARALAMBOUS AND A. R. CONN, An eJficient method to solve the minimax problem
directly, SIAM J. Numer. Anal., 15 (1978), pp. 162-187.

[11] T. F. COLEMAN AND A. R. CONN, Nonlinear programming via an exact penalty function:
Asymptotic analysis, Math. Programming, 24 (1982), pp. 123-136.

[12] A. R. COLVILLE, A comparative study on nonlinear programming codes, Tech. Report 320-2949,
IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 1968.

[13] A. R. CONN, An ejcient second order method to solve the (constrained) minimax problem,
Tech. Report CORR 79-5, Department of Combinatorics and Optimization, University of
Waterloo, Waterloo, Ontario, Canada, 1979.

[14] A. R. CONN AND Y. LI, Structure and characterization of discrete Chebyshev problems, Tech.
Report CS-88-39, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, 1988.

[15] , An approach to nonlinear lo approximation, in Proc. Fifth Mexican Workshop on
Numerical Analysis, J. P. Hennart, ed., Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1991, pp. 346-365.

https://www.researchgate.net/publication/226268861_Discrete_nonlinear_approximation_problems_in_polyhedral_norms_-_A_Levenberg-like_algorithm?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/226268861_Discrete_nonlinear_approximation_problems_in_polyhedral_norms_-_A_Levenberg-like_algorithm?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/226081043_Nonlinear_Programming_Using_Minimax_Techniques?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/226081043_Nonlinear_Programming_Using_Minimax_Techniques?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/3124754_Optimization_of_Microwave_Networks_by_Razor_Search?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/3124754_Optimization_of_Microwave_Networks_by_Razor_Search?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/245343656_An_improved_algorithm_for_discrete_Chebyshev_linear_approximation_Proc?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/245343656_An_improved_algorithm_for_discrete_Chebyshev_linear_approximation_Proc?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/245343656_An_improved_algorithm_for_discrete_Chebyshev_linear_approximation_Proc?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/260697468_The_Differential_Correction_Algorithm_for_Rational_l_-Approximation?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/260697468_The_Differential_Correction_Algorithm_for_Rational_l_-Approximation?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/243096066_Primal_Methods_are_Better_than_Dual_Methods_for_Solving_Overdetermined_Linear_Systems_in_the_l_infty_Sense?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/243096066_Primal_Methods_are_Better_than_Dual_Methods_for_Solving_Overdetermined_Linear_Systems_in_the_l_infty_Sense?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/243096066_Primal_Methods_are_Better_than_Dual_Methods_for_Solving_Overdetermined_Linear_Systems_in_the_l_infty_Sense?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/242914049_Acceleration_of_the_Least_pth_Algorithm_for_Minimax_Optimization_with_Engineering_Applications?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/242914049_Acceleration_of_the_Least_pth_Algorithm_for_Minimax_Optimization_with_Engineering_Applications?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/265441581_Non-linear_optimization_as_a_sequence_of_least_P-th_optimization_with_finite_values_of_P?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/265441581_Non-linear_optimization_as_a_sequence_of_least_P-th_optimization_with_finite_values_of_P?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/245319668_An_Efficient_Method_to_Solve_the_Minimax_Problem_Directly?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/245319668_An_Efficient_Method_to_Solve_the_Minimax_Problem_Directly?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/225229080_Nonlinear_programming_via_an_exact_penalty_function_asymptotic_analysis_Report_CS-80-30?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/225229080_Nonlinear_programming_via_an_exact_penalty_function_asymptotic_analysis_Report_CS-80-30?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/267007878_A_Comparative_Study_on_Nonlinear_Programming_Codes?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/267007878_A_Comparative_Study_on_Nonlinear_Programming_Codes?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==


A STRUCTURE-EXPLOITING ALGORITHM 263

[16] W. C. DAVIDON, A new least squares algorithm, J. Optim. Theory Appl., 18 (1976), pp. 187-
198.

[17] A. DAx, A note on optimality conditions for the Euclidean multifacility location problem,
Math. Programming, 36 (1986), pp. 72-80.

[18] J. DESCLOUX, Ddgdndresence dans les approximations de Tschebysheff lindaries et discrtes,
Numer. Math., 3 (1961), pp. 180-187.

[19] EL-ATTAR, M. VIDYASAGAR, AND S. R. K. DUTTA, An algorithm for ll-approximation, SIAM
J. Numer. Anal., 16 (1979), pp. 70-86.

[20] R. FLETCHER, A model algorithm for composite nondifferentiable optimization problems, Math.
Programming Stud., 17 (1982), pp. 67-76.

[21] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The Johns Hopkins University
Press, Baltimore, MD, 1983.

[22] N. I. M. GOULD, On solving three classes of nonlinear programming problems via simple
differentiable penalty functions, J. Optim. Theory Appl., 56 (1988), pp. 89-126.

[23] J. HALD AND K. MADSEN, Combined LP and Quasi-Newton methods for minimax optimiza-
tion, Math. Programming, 20 (1981), pp. 49-62.

[24] S. P. HAN, Variable metric methods for minimizing a class of nondifferentiable functions,
Math. Programming, 20 (1981), pp. 1-13.

[25] J. S. KOWALIK AND M. R. OSBORNE, Methods for Unconstrained Optimization, American
Elsevier, New York, 1968.

[26] Y. LI, An eJficient algorithm for nonlinear minimax problems, Ph.D. thesis, Computer Science
Department, University of Waterloo, Waterloo, Ontario, Canada, 1988.

[27] K. MADSEN, Minimax solution of nonlinear equations without calculating derivatives, Math.
Programming Stud., 3 (1975), pp. 110-126.

[28] , Minimization of nonlinear approximation functions, Ph.D. thesis, Technical University
of Denmark, Lyngby, Denmark, 1985.

[29] W. MURRAY AND M. L. OVERTON, A projected Lagrangian algorithm for nonlinear minimax
optimization, SIAM. J. Sci. Statist. Comput., 1 (1980), pp. 345-370.

[30] M. R. OSBORNE AND G. A. WATSON, An algorithm for minimax approximation in the non-
linear case, Comput. J., 12 (1968), pp. 63-68.

[31] M. J. D. POWELL, Approximation Theory and Methods, Cambridge University Press, Cam-
bridge, U.K., 1981.

[32] J. R. RICE, The Approximation of Functions 2, Nonlinear Theory, Addison-Wesley, Reading,
MA, 1969.

[33] J. B. ROSEN AND S. SUZUKI, Construction of the nonlinear programming test problems, Comm.
ACM, 8 (1965), p. 113.

[34] H. H. ROSENBROCK, An automatic method for finding the greatest or least value of a function,
Comput. J., 3 (1960), pp. 175-184.

[35] E. L. STIEFEL, Numerical methods of Tchebycheff approximation, in Proceedings of a Sympo-
sium, Mathematics Research Center, University of Wisconsin Press, Madison, WI, 1959.

[36] G. A. WATSON, The minimax solution of an overdetermined system of non-linear equations,
J. Inst. Math. Appl., 23 (1979), pp. 167-180.

[37] R. S. WOMERSLEY, Local properties of algorithms for minimizing nonsmooth composite func-
tions, Math. Programming, 32 (1985), pp. 69-89.

[38] R. S. WOMERSLEY AND R. FLETCHER, An algorithm for composite nonsmooth optimization
problems, J. Optim. Theory Appl., 48 (1986), pp. 493-523.

https://www.researchgate.net/publication/246936523_New_Least_Squares_Algorithms?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/246936523_New_Least_Squares_Algorithms?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/225689496_A_note_on_optimality_conditions_for_the_Euclidean_Multifacility_location_problem?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/225689496_A_note_on_optimality_conditions_for_the_Euclidean_Multifacility_location_problem?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/226029913_A_Model_Algorithm_for_Composite_Nondifferentiable_Optimization_Problems?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/226029913_A_Model_Algorithm_for_Composite_Nondifferentiable_Optimization_Problems?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/227131305_On_solving_three_classes_of_nonlinear_programming_problems_via_simple_differentiable_penalty_functions?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/227131305_On_solving_three_classes_of_nonlinear_programming_problems_via_simple_differentiable_penalty_functions?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/226834744_Combined_LP_and_Quasi-Newton_Methods_for_Minimax_Optimization?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/226834744_Combined_LP_and_Quasi-Newton_Methods_for_Minimax_Optimization?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/226534213_Variable_metric_methods_for_minimizing_a_class_of_nondifferentiable_functions?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/226534213_Variable_metric_methods_for_minimizing_a_class_of_nondifferentiable_functions?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/265698807_Methods_for_Unconstrained_Optimization_Problems_Elaserier?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/265698807_Methods_for_Unconstrained_Optimization_Problems_Elaserier?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/277205113_An_Efficient_Algorithm_for_Nonlinear_Minimax_Problems?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/277205113_An_Efficient_Algorithm_for_Nonlinear_Minimax_Problems?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/226496093_Minimax_solution_of_non-linear_equations_without_calculating_derivatives?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/226496093_Minimax_solution_of_non-linear_equations_without_calculating_derivatives?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/250956307_A_Projected_Lagrangian_Algorithm_for_Nonlinear_l_1_Optimization?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/250956307_A_Projected_Lagrangian_Algorithm_for_Nonlinear_l_1_Optimization?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/31151129_An_Algorithm_for_Minimax_Approximation_in_the_Nonlinear_Case?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/31151129_An_Algorithm_for_Minimax_Approximation_in_the_Nonlinear_Case?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/242550605_Approximation_Theory_and_Methods?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/242550605_Approximation_Theory_and_Methods?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/264960077_The_approximation_of_functions_Vol_1_Linear_theory?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/264960077_The_approximation_of_functions_Vol_1_Linear_theory?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/239544139_Construction_of_nonlinear_programming_test_problems?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/239544139_Construction_of_nonlinear_programming_test_problems?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/31104170_An_Automatic_Method_for_Finding_Greatest_or_Least_Value_of_a_Function?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/31104170_An_Automatic_Method_for_Finding_Greatest_or_Least_Value_of_a_Function?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/268623913_Numerical_methods_of_Tchebycheff_approximation?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/268623913_Numerical_methods_of_Tchebycheff_approximation?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/243083447_The_Minimax_Solution_of_an_Overdetermined_System_of_Non-linear_Equations?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/243083447_The_Minimax_Solution_of_an_Overdetermined_System_of_Non-linear_Equations?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/227107676_Local_properties_of_algorithms_for_minimizing_nonsmooth_composite_functions?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/227107676_Local_properties_of_algorithms_for_minimizing_nonsmooth_composite_functions?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/227116826_An_algorithm_for_composite_nonsmooth_optimization_problems?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/227116826_An_algorithm_for_composite_nonsmooth_optimization_problems?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/251271192_Degenerescence_dans_les_approximations_de_Tschebyscheff_lineaires_et_discretes?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==
https://www.researchgate.net/publication/251271192_Degenerescence_dans_les_approximations_de_Tschebyscheff_lineaires_et_discretes?el=1_x_8&enrichId=rgreq-8ccdf20f-0436-4b59-9e07-7200962753fc&enrichSource=Y292ZXJQYWdlOzIzODg3ODA4OTtBUzozNTA5Mzk3NzM5ODA2NzJAMTQ2MDY4MTk3MTE1MA==



