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Abstract In this paper, a new objective penalty function approach is proposed for

solving minimax programming problems with equality and inequality constraints.

This new objective penalty function combines the objective penalty and constraint

penalty. By the new objective penalty function, a constrained minimax problem is

converted to minimizations of a sequence of continuously differentiable functions

with a simple box constraint. One can thus apply any efficient gradient minimization

methods to solve the minimizations with box constraint at each step of the sequence.

Some relationships between the original constrained minimax problem and the

corresponding minimization problems with box constraint are established. Based on

these results, an algorithm for finding a global solution of the constrained minimax

problems is proposed by integrating the particular structure of minimax problems

and its global convergence is proved under some conditions. Furthermore, an

algorithm is developed for finding a local solution of the constrained minimax

problems, with its convergence proved under certain conditions. Preliminary results
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of numerical experiments with well-known test problems show that satisfactorily

approximate solutions for some constrained minimax problems can be obtained.

Keywords Minimax problem � Constrained minimization � Objective

penalty function � Approximate solution

1 Introduction

Consider the following constrained minimax programming problem:

min
x

FðxÞ
s.t. gjðxÞ 6 0; j 2 J;

hlðxÞ ¼ 0; l 2 L:

ðP1Þ

where FðxÞ ¼ max
i2I

fiðxÞ, I ¼ f1; � � � ;mg; J; L are a finite set of integers. In this

paper, we assume that fiðxÞ : Rn ! R; i 2 I, gjðxÞ : Rn ! R; j 2 J, hlðxÞ : Rn !
R; l 2 L are continuously differentiable, and denote its feasible set by

X ¼ fx 2 R
njgjðxÞ 6 0; j 2 J; hlðxÞ ¼ 0; l 2 Lg.

The objective function FðxÞ is not necessarily differentiable, even when all

fiðxÞ; i 2 I are differentiable. Thus, problem (P1) is, in nature, a nondifferentiable

optimization problem. In real-world applications, many problems of interest can be

modeled as the above finite minimax problem (P1) such as in curve fitting, l1 and l1
approximation problems, systems of nonlinear equations, nonlinear programming

problems, multiobjective problems, engineering design, optimal control, and many

other situations (see, for examples, [1–4]).

Over the past few decades, the finite minimax problem has attracted attention

from more and more researchers and many algorithms have been developed, which

can be divided into three classes in general. The first class of algorithms regards

problem (P1) as a constrained nonsmooth optimization problem. Thus, it can be

solved by general nonsmooth optimization methods including subgradient methods,

bundle methods, and cutting plane methods (see [1, 4, 5]). Due to the particular

structure of the objective function, the second class of algorithms tries to smooth

approximately the maximum objective function FðxÞ (named as smooth methods).

Thus, problem (P1) can be converted into a smoothed optimization problem being

solved by any powerful smooth optimization methods. Zang [6] firstly introduced a

function to smooth the finite maximum function locally in some neighborhood of

nondifferentiable point of FðxÞ. Some other smoothing techniques attempt to

smooth FðxÞ globally, including exponential (entropic) functions (see [7–10]) and

hyperbolic smoothing functions (see [11]). However, these smooth methods need to

solve a corresponding nonlinear optimization problem at each iteration to generate a

new approximation solution by controlling the precision parameter(s). For the third

class algorithms of solving problem (P1), according to the following well-known

fact that problem (P1) is equivalent to a nonlinear smooth optimization problem

through introducing a new variable t 2 R,
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min
ðx;tÞ

t

s.t. fiðxÞ 6 t; i 2 I;

gjðxÞ 6 0; j 2 J;

hlðxÞ ¼ 0; l 2 L:

ðP2Þ

The feasible set of (P2) is denoted by X ¼ fðx; tÞ 2 R
nþ1jfiðxÞ 6 t; i 2 I; gjðxÞ

6 0; j 2 J; hlðxÞ ¼ 0; l 2 Lg.
Obviously, solving the finite minimax problem (P1) is equivalent to solving the

problem (P2). Many successful algorithms can be exploited to solve this equivalent

reformulation (P2), such as sequential quadratic programming methods (see [12, 13])

and trust-region methods (see [14–16]). Di Pillo et al. [17] proposed an approach

which reduces to solving a unconstrained nonlinear programming problem in which

its objective function is formulated by a continuously differentiable exact penalty

function. However, it needs to choose the suitable penalty parameters in each

iteration in implementation. Rustem et al. [18] discussed an approach using an

augmented Lagrangian formulation to solve the finite minimax problems with

inequality constraints. But, this formulation seems a little complex and enlarges

greatly the number of variables because of introducing the Lagrange multipliers.

Recently, for dealing with finite constrained minimax problems, Obasanjo et al. [19]

presented a primal-dual interior-point method to solve the equivalent problem (P2).

Ma et al. [20] introduced a new exact and smooth penalty function to tackle minimax

problems with equality constraints, in which the penalty parameter needed to be

increased gradually to infinity. Based on the equivalent reformulation (P2) and a

novel continuously differentiable exact objective penalty function, we propose a

penalty function method to solve the minimax problem (P1) by taking a finite penalty

parameter. The proposed approach in this paper should fall into the third class.

Although classical penalty function methods are popular, there are some

shortcomings. For instances, the penalty function is not necessarily smooth if it is

exact; the penalty function is not necessarily exact if it is smooth. Now, we take a

general constrained minimization problem to show these as follows:

min
x2Rn

f ðxÞ s.t. gjðxÞ 6 0; j 2 J; hlðxÞ ¼ 0; l 2 L: ð1:1Þ

where f ðxÞ : Rn ! R is continuously differentiable and gjðxÞ; hlðxÞ are given in

(P1). The penalty functions are (see [29]):

F1ðx; qÞ ¼ f ðxÞ þ q
X

j2J

gþj ðxÞ þ
X

l2L

jhlðxÞj
" #

ð1:2Þ

F2ðx; qÞ ¼ f ðxÞ þ q
X

j2J

ðgþj ðxÞÞ
2 þ

X

l2L

h2
l ðxÞ

" #
ð1:3Þ

where gþj ðxÞ ¼ maxfgjðxÞ; 0g. Under some conditions, F1ðx; qÞ is an exact penalty

function, but it is not smooth in general. F2ðx; qÞ is a smooth penalty function, but it
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is not exact. In addition, the penalty parameter q for all penalty function algorithms

needs to be increased gradually. So does the exact penalty function algorithm,

because we do not know exactly how big the penalty parameter q is needed. In fact,

it is impossible to take a very big value of the penalty parameter q, which can cause

numerical difficulties and ill-conditioning effects [29].

To circumvent difficulties from classical penalty functions, an objective penalty

function has been proposed in [21–23] for solving problem (1.1) with the inequality

constraints, and defined as follows:

Fðx; MÞ ¼ ½f ðxÞ �M�p þ
X

j2J

gjðxÞp ð1:4Þ

with p [ 0. Suppose that x� is an optimal solution of problem (1.1) with the

equality constraints, and f ðx�Þ is the optimal value of the objective function. By

updating suitably the penalty parameter fMkg and solving a sequential uncon-

strained minimizations of Fðx; MkÞ, then there are the solution sequence

fxðMkÞg ! x� as well as fMkg ! f ðx�Þ (see [22, 23]). Recently, Meng et al. [24,

25] introduced more general objective penalty functions. They proved that under

certain conditions, objective penalty functions were exact and differentiable and

proposed efficient objective penalty function algorithms to solve problem (1.1)

with inequality constraints [26, 27]. This means that it only needs to solve single

unconstrained optimization problem when the penalty parameter M is an exact

penalty parameter. Using an objective penalty function similar to (1.4), Dutta

et al. [28] firstly solved a class of minimax problems. However, the rule of

updating penalty parameters fMkg was not easy to control and its initial value was

difficult to choose without considering the particular structure of minimax prob-

lems in their papers.

Motivated by [21, 26, 28], we introduce a new smooth penalty function for

solving minimax problems in this paper. The main feature of our new smooth

penalty function combines the objective penalty function and constraint penalty

function, which shares good properties of smoothness and some kinds of exactness

and means that any efficient gradient minimization methods available can be used.

It will be shown that the sequential solution of minimizations with a simple box

constraint can approximate progressively the optimal solutions of original

minimax problem. We first propose a global penalty function algorithm and

prove its global convergence. Then, an algorithm for finding the approximately

local solutions is proposed and its convergence is proved under certain conditions.

The rest of this paper is organized as follows. In Sect. 2, we obtain some

relations between the minimax and its corresponding minimization problems with

simple box constraints. Then, we propose a new penalty function algorithm for

finding approximate solutions to minimax problems and prove the convergence

under some conditions. In Sect. 3, we report some numerical results with 23 test

problems. Finally, we conclude the paper.
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2 A New Penalty Function Approach

Based on the equivalence between (P1) and (P2), the correspondence of local and

global solutions of problem (P1) with local and global solutions of problem (P2) is

established below.

Proposition 2.1 Let �x be a global (local) solution of (P1) with �t ¼ Fð�xÞ; then ð�x; �tÞ
is a global (local) solution of (P2). Conversely, if ð�x; �tÞ is a global (local) solution of

(P2), then the point �x is a global (local) solution of (P1) and �t ¼ Fð�xÞ:

In terms of Proposition 2.1, next we will focus attention on solving problem (P2)

and construct the following penalty function for problem (P2):

Eðx; t; M; qÞ ¼ 1

2
½ðt �MÞþ�2 þ q

2

X

i2I

½ðfiðxÞ � tÞþ�2
(

þ
X

j2J

½gþj ðxÞ�
2 þ

X

l2L

h2
l ðxÞ

)

where M 2 R is called an objective penalty parameter and q [ 0 is called constraint

penalty parameter. It can easily be shown that, for each parameter M and q,

Eðx; t; M; qÞ is continuously differentiable with respect to ðx; tÞ.

2.1 A New Penalty Function Algorithm for a Global Solution

In this subsection, we assume that the parameter q[ 0 is a pre-specified constant

and consider the following optimization problem:

min
ðx;tÞ2Y

Eðx; t; M; qÞ ðPMÞ

where Y � R
nþ1 is a simple box set satisfying X � Y ¼

Qnþ1
i¼1 ½ui; vi�;

�1\ui 6 vi\þ1. Hence, for any M and q, problem (PM) exists a minimizer.

For some M, if an optimal solution ðx�M; t�MÞ to (PM) is also an optimal solution to

(P2), then M is called an exact value of the objective penalty parameter (see, [26]).

Theorem 2.1 The following assertions hold:

(i) If ðx�; t�Þ is a global solution of (P2) and M > t�; then ðx�; t�Þ is also a global

solution of (PM) with Eðx�; t�; M; qÞ ¼ 0 for any q[ 0.

(ii) Let ðx�; t�Þ be a global solution of (P2). If ð�x;�tÞ is a global solution of (PM) for

some q [ 0 and M ¼ t�; then ð�x; �tÞ is also a global solution of (P2).

Proof

(i) Since ðx�; t�Þ is a global solution to (P2) and M > t�, we have Eðx�; t�; M; qÞ ¼
0 for any q[ 0. It follows from Eðx; t; M; qÞ > 0 for any ðx; tÞ 2 R

nþ1 that

ðx�; t�Þ is a global solution to (PM).
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(ii) If ð�x; �tÞ is a global solution of (PM) for some q [ 0, then Eð�x;�t; M; qÞ 6
Eðx; t; M; qÞ for any ðx; tÞ 2 R

nþ1. In particular, Eð�x;�t; M;qÞ 6
Eðx�; t�; M; qÞ ¼ 0 due to M ¼ t�. Hence, Eð�x; �t; M; qÞ ¼ 0 and ð�x; �tÞ is

feasible of (P2). Moreover, �t 6 M ¼ t� 6 t for any feasible point ðx; tÞ of (P2).

This shows that ð�x;�tÞ is a global solution of (P2). h

Theorem 2.2 Let ðx�; t�Þ be a global solution of (P2). Suppose that for some M

and some q[ 0, ðx�M; t�MÞ is a global solution of (PM). Then, the following relations

hold:

(i) If Eðx�M; t�M; M; qÞ ¼ 0, then ðx�M; t�MÞ is feasible to (P2) and t� 6 t�M 6 M.

(ii) If Eðx�M; t�M; M; qÞ[ 0 and ðx�M ; t�MÞ is not feasible to (P2), then M\t� and

t�M\t�.
(iii) If Eðx�M; t�M ; M; qÞ[ 0 and ðx�M ; t�MÞ is feasible to (P2), then ðx�M ; t�MÞ is a

global solution to (P2).

Proof

(i) The result is obvious from the definition of Eðx; t; M; qÞ.
(ii) Since ðx�M; t�MÞ and ðx�; t�Þ are global solutions of (PM) and (P2), respectively,

we have

0\Eðx�M ; t�M ; M; qÞ 6 Eðx�; t�; M; qÞ ¼ 1

2
½ðt� �MÞþ�2;

which implies that M\t�. If t�M 6 M, then t�M 6 M\t�. Otherwise t�M [ M, we have

0\
1

2
½ðt�M �MÞþ�2\Eðx�M; t�M; M; qÞ 6 Eðx�; t�; M; qÞ ¼ 1

2
½ðt� �MÞþ�2:

Hence, t�M\t�.
(iii) Since Eðx�M ; t�M ; M; qÞ[ 0 and ðx�M; t�MÞ is a feasible point to (P2), we have

0\
1

2
½ðt�M �MÞþ�2 ¼ Eðx�M; t�M; M; qÞ 6 Eðx; t; M; qÞ ¼ 1

2
½ðt �MÞþ�2; 8ðx; tÞ 2 X;

which implies that

t�M �M 6 t �M; 8ðx; tÞ 2 X:

Thus, ðx�M; t�MÞ is a global solution to (P2). h

Remark 2.1 From Theorem 2.2, the M satisfied (iii) of Theorem 2.2 is an exact

objective penalty parameter. Theorem 2.2 provides a good way to solve problem

(P2) for finding a global solution.

In terms of this theorem, we propose an algorithm to compute a globally optimal

solution to problem (P2) by solving problem (PM) sequentially. We call the

following algorithm as a global objective penalty function (for short, GOPF)

algorithm.
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GOPF Algorithm:

Step 0 Give a constant q[ 0 fixed. Choose a point x0 2 X and a1\ minx2X FðxÞ.
Let b1 ¼ t0 ¼ Fðx0Þ and M1 ¼ a1þb1

2
. Let k :¼ 1.

Step 1 Solve minðx;tÞ2Y Eðx; t; Mk; qÞ starting at ðxk�1; tk�1Þ, where

Y ¼ X0 � ½a1; b1� � R
nþ1, X0 is a simple box containing X. Let ðxk; tkÞ

be its global solution.

Step 2 If Eðxk; tk; Mk; qÞ ¼ 0, let akþ1 :¼ ak; bkþ1 ¼: tk;Mkþ1 :¼ akþ1þbkþ1

2
, and go

to Step 1. Otherwise, Eðxk; tk; MkÞ[ 0, go to Step 3.

Step 3 If ðxk; tkÞ is not feasible to (P2), let akþ1 :¼ maxftk;Mkg; bkþ1 :¼
bk;Mkþ1 :¼ akþ1þbkþ1

2
, k :¼ k þ 1, and go to Step 1. Otherwise, stop,

ðxk; tkÞ is a global solution of (P2).

In GOPF algorithm, it is assumed that there exists a global minimization algorithm

available to solve the problem with simple box constraint in Step 1, and one can

always get a1\ minx2X FðxÞ.

Theorem 2.3 Let t� ¼ minðx;tÞ2X t and fðxk; tkÞg be the sequence generated by

GOPF algorithm.

(i) If fðxk; tkÞg is a finite sequence, i.e., GOPF algorithm stops at the �kth iteration,

then ðx�k; t�kÞ is a global solution to (P2).

(ii) If fðxk; tkÞg is an infinite sequence, then fðxk; tkÞg is bounded and any limit

point of fðxk; tkÞg is a global solution to (P2).

Proof

(i) If GOPF algorithm terminates at the �kth iteration and the second situation of

Step 3 occurs, by (iii) of Theorem 2.2, thus, ðx�k; t�kÞ is a global solution to (P2).

(ii) Suppose that fðxk; tkÞg is an infinite sequence generated by GOPF algorithm.

Firstly, we prove the sequence fakg increases and the sequence fbkg decreases

with

ak 6 t� 6 bk; k ¼ 1; 2; � � � ð2:1Þ

and

bkþ1 � akþ1 6
bk � ak

2
; k ¼ 1; 2; � � � ð2:2Þ

by the induction method.

In fact, for k ¼ 1, it follows from GOPF algorithm that a1 6 a2; b2 >

b1; a1 6 t� 6 b1; b2 � a2 6
b1�a1

2
.

For k > 1, assume that (2.1) and (2.2) hold.

Consider the case of k þ 1. From Step 2, we have akþ1 ¼ ak; bkþ1 ¼
tk;Mkþ1 ¼ akþ1þbkþ1

2
. Thus, by (i) of Theorem 2.2,
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akþ1 ¼ ak 6 t� 6 tk ¼ bkþ1 and bkþ1 6 Mk ¼
ak þ bk

2
6 bk: ð2:3Þ

Hence, bkþ1 � akþ1 6 Mk � ak ¼ bk�ak

2
. From Step 3, we have

bkþ1 ¼ bk; akþ1 ¼ maxftk;Mkg. Thus, by (ii) of Theorem 2.2,

ak 6
ak þ bk

2
¼ Mk 6 akþ1 and akþ1 6 t� 6 bk ¼ bkþ1: ð2:4Þ

Hence, bkþ1 � akþ1 ¼ bk �maxftk;Mkg 6 bk �Mk ¼ bk�ak

2
. By the induction

method, (2.1) and (2.2) can hold. In addition, we can also obtain

ak 6 Mk 6 bk; k ¼ 1; 2; � � � : ð2:5Þ

Since fakg is increasing, fbkg is decreasing, and (2.1), we have fakg and fbkg
converge. Let limk!1 ak ¼ a� and limk!1 bk ¼ b�. From (2.2), we have a� ¼ b�.
From (2.5), we can get limk!1Mk ¼ a�.

Since fðxk; tkÞg � Y and Y is a bounded box, the sequence fðxk; tkÞg is bounded.

Without loss of generality, assume that ðxk; tkÞ ! ð�x; �tÞ as k!1. Next, we prove

ð�x;�tÞ is a global solution to (P2). It follows from ak 6 t� 6 bk; k ¼ 1; 2; � � � that, by

letting k!1, we can obtain a� ¼ t�. Noting that fMkg converges to t�, by (ii) of

Theorem 2.1, we can conclude that ð�x; �tÞ is a global solution to (P2). h

GOPF algorithm provides an alternative method to solve (P1). In GOPF

algorithm, it does not need to increase the parameter M to 1, which differs from

other penalty function methods [17–20]. Theorem 2.3 is obviously of great

theoretical interest, however, if we use standard optimization methods to solve the

sequences of problem (PM) we may possibly find local solutions of problem (PM).

Then, it is interesting to analyze the more practical algorithm scheme, where we

suppose only that at each step we are able to find a local solution of (PM). Next, we

consider how to find a local solution to (P2) and obtain some results which differ

from those in previous subsection. To ensure the feasibility of (P2), we additionally

need to adjust the constraint penalty parameter q under certain circumstance.

2.2 A New Penalty Function Algorithm for a Local Solution

In the following, a point ðx; tÞ 2 R
nþ1 is said to be an e-feasible solution of (P2) if

fiðxÞ � t 6 e; i 2 I; gjðxÞ 6 e; j 2 J; jhlðxÞj 6 e; l 2 L: ð2:6Þ

For any given e [ 0, a point ð�x; �tÞ is said to be an e-local solution of (P2) if ð�x;�tÞ is

an e-feasible solution of (P2) and there exists a neighborhood Nð�x;�tÞ of ð�x;�tÞ such that

�t 6 t þ e for any ðx; tÞ 2 Nð�x;�tÞ \ X.

Theorem 2.4 Let x0 2 X; t0 ¼ Fðx0Þ; and t� ¼ minðx;tÞ2X t: For any given e [ 0;

suppose that for some M 6 t0 and q[ 0; ðx�M;q; t
�
M;qÞ is a local solution of (PM)

starting at ðx0; t0Þ: Then, the following statements hold:

(i) If Eðx�M;q; t
�
M;q; M; qÞ ¼ 0, then ðx�M;q; t

�
M;qÞ is feasible to (P2) and t� 6 t�M 6 M.
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(ii) If Eðx�M;q; t
�
M;q; M; qÞ[ 0 and ðx�M;q; t

�
M;qÞ is feasible to (P2), then ðx�M;q; t

�
M;qÞ is

a local solution to (P2).

(iii) If Eðx�M;q; t
�
M;q; M; qÞ[ 0 and ðx�M;q; t

�
M;qÞ is not feasible to (P2), let q1 ¼ Kq

ðK [ 0Þ and suppose that ðx�M;q1
; t�M;q1

Þ is a local solution of (PM) with q ¼ q1

starting at ðx0; t0Þ. Then, there exists a K0 [ 0 such that K > K0, ðx�M;q1
; t�M;q1

Þ
is an e-local solution of (P2).

Proof

(i) The result is obvious from the definition of Eðx; t; M; qÞ.
(ii) Since ðx�M;q; t

�
M;qÞ is a local solution to (PM) and a feasible point to (P2), there

exists a neighborhood Nðx�
M;q;t

�
M;qÞ of ðx�M;q; t

�
M;qÞ such that, for all

ðx; tÞ 2 Nðx�
M;q;t

�
M;qÞ \ X

0\
1

2
½ðt�M;q �MÞþ�2 ¼ Eðx�M;q; t

�
M;q; M; qÞ 6 Eðx; t; M; qÞ ¼ 1

2
½ðt �MÞþ�2;

which implies that

t�M;q �M 6 t �M; 8ðx; tÞ 2 Nðx�
M;q;t

�
M;qÞ \ X:

Thus, ðx�M;q; t
�
M;qÞ is a local solution to (P2).

(iii) We first prove that ðx�M;q1
; t�M;q1

Þ is an e-feasible solution of (P2). By

contraction, suppose that for any n [ 0, there exists Kn [ n such that when

q1 ¼ Knq, ðx�M;q1
; t�M;q1

Þ is not an e-feasible solution of (P2). Then, there exists

at least i0 2 I or j0 2 J or l0 2 L, such that
X

i2I

½ðfiðx�M;q1
Þ � tÞþ�2 þ

X

j2J

½gþj ðx�M;q1
Þ�2 þ

X

l2L

h2
l ðx�M;q1

Þ > e2:

Since ðx�M;q1
; t�M;q1

Þ is a local solution of (PM) starting from ðx0; t0Þ, and ðx0; t0Þ is a

feasible point of (P2), we have

1

2
½ðt0 �MÞþ�2 ¼ Eðx0; t0; M; q1Þ > Eðx�M;q1

; t�M;q1
; M; q1Þ >

Kq
2

e2:

Letting K ! þ1 in the last inequality above, we have 1
2
½ðt0 �MÞþ�2 ! þ1,

which leads to a contract that 1
2
½ðt0 �MÞþ�2 is finite. Thus, there exists a K0 [ 0

such that K > K0; we have ðx�M;q1
; t�M;q1

Þ as an e-feasible solution of (P2). Similar to

the proof of (ii), we can obtain that ðx�M;q1
; t�M;q1

Þ is an e-local solution of (P2). h

Based on Theorem 2.4, we develop an algorithm to find an approximately local

solution to (P2). The algorithm solves locally the sequence of minimizations of

problem (PM) by adjusting the two parameters M and q, which is called a local

objective penalty function (for short, LOPF) algorithm.
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LOPF Algorithm:

Step 0 Give q > 1. Choose 1 [ e [ 0, x0 2 X; and a1\ minx2X FðxÞ. Let b1 ¼
t0 ¼ Fðx0Þ; and M1 ¼ a1þb1

2
. Let q1 ¼ q, p1 ¼ 0; and k :¼ 1.

Step 1 Solve minðx;tÞ2Y Eðx; t; Mk; qkÞ starting at ðx0; t0Þ, where

Y ¼ X0 � ½a1; b1� � R
nþ1, X0 is a simple box containing X. Let ðxk; tkÞ

be its local solution, and go to Step 2.

Step 2 If Eðxk; tk; Mk; qkÞ ¼ 0, go to Step 3; otherwise, Eðxk; tk; Mk; qkÞ[ 0, go to

Step 4.

Step 3 If bk � ak 6 e, go to Step 5; otherwise, let akþ1 :¼ ak, bkþ1 :¼ Mk,

Mkþ1 :¼ akþ1þbkþ1

2
, qkþ1 :¼ q, pkþ1 :¼ 0, k :¼ k þ 1, and go to Step 1.

Step 4 If ðxk; tkÞ is not an e-feasible solution of (P2), let qkþ1 :¼ 10qk,

pkþ1 :¼ pk þ 1, k :¼ k þ 1, and go to Step 1; otherwise, go to Step 5.

Step 5 Stop and ðxk; tkÞ is an e-local solution to (P2).

Remark 2.2 Any efficient gradient methods available can be used in Step 1. The

parameter q is increased gradually in Step 4 for guaranteing that the point ðxk; tkÞ is

e-feasible for problem (P2). In numerical experiments later, the parameter q does

not need to be increased big enough.

Theorem 2.5

(i) The LOPF algorithm must stop in finite steps.

(ii) For any given e [ 0 and q > 1, let fðxK ; tKÞg be the final solution obtained by

LOPF algorithm. Then, fðxK ; tKÞg is a local solution or an e-local solution of

(P2).

Proof Let t� be the global optimal value of (P2) and ðxk; tkÞ be a sequence

generated by LOPF algorithm.

(i) We prove that the LOPF algorithm must stop in finite steps.

(1) If Eðxk; tk; Mk; qkÞ ¼ 0 and ðbk � akÞ 6 e, then the algorithm stops;

otherwise, let akþ1 :¼ ak, bkþ1 :¼ Mk;Mkþ1 :¼ akþ1þbkþ1

2
;qkþ1 ¼ q, k :¼

k þ 1 and go to Step 1.

(2) Eðxk; tk; Mk; qkÞ[ 0, and if ðxk; tkÞ is an e-feasible solution of (P2), then

the algorithm stops; otherwise, let qkþ1 :¼ 10qk, pkþ1 :¼ pk þ 1, k :¼
k þ 1 and go to Step 1. From (iii) of Theorem 2.4, there are at most

dlg ðb1�a1Þ2
4e2 e þ 1 iteration times from Step 4 to Step 1, which means that

when pk > dlg ðb1�a1Þ2
4e2 e þ 1, ðxk; tkÞ must be an e-feasible solution of (P2),

where dxe represents the largest integer less than x. For any k, only if

Fðxk;Mk; qkÞ ¼ 0 and ðbk � akÞ[ e, we will change k to k þ 1 and let

akþ1 :¼ ak, bkþ1 :¼ Mk;Mkþ1 :¼ akþ1þbkþ1

2
; qkþ1 ¼ q, go to Step 1. Then,

by (i) of Theorem 2.4, we have that t� 6 tk 6 Mk. In this case, ðxk; tkÞ is

also a global minimizer for the problem minðx;tÞ2Y Eðx; t; Mk; qkÞ. From

the proof of Theorem 2.3, we know that
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akþ1 ¼ ak 6 t� 6 bkþ1 6 bk and ak 6 Mk 6 bk and

bkþ1 � akþ1 6
bk � ak

2
:

Hence, there exists a k0 [ 0, such that for any k > k0, ðbk � akÞ 6 e. Based the

above proof, the LOPF algorithm must terminate in finite steps.

(ii) Suppose ðxK ; tKÞ is the final solution obtained by LOPF algorithm. We now

prove that ðxK ; tKÞ must be a local solution or an e-local solution of (P2).

By LOPF algorithm, we know that the final obtained solution has only one of the

following two cases:

(1) EðxK ; tK ; MK ; qKÞ ¼ 0 and ðbK � aKÞ 6 e, then ðxK ; tKÞ 2 X and aK 6 t�

6 tK 6 bK . Hence, we have that tK 6 t� þ e. So, ðxK ; tKÞ is an e-local solution

of (P2).

(2) EðxK ; tK ; MK ; qKÞ[ 0, and xK is an e-feasible solution of (P2). By the proof of

Theorem 2.4, we know that ðxK ; tKÞ must be an e-local solution of (P2). h

2.3 How to Choose a1

From the above algorithms, it can be seen that the initial value of a1 is difficult to be

chosen for finding the optimal solution of problem (P2). In [25], the authors have

designed an objective penalty function algorithm for solving nonlinear program-

ming problems with inequality constraints. However, they failed to point out which

a1 should be considered as a good start point. Indeed, when the solution is unknown,

it is difficult to choose a suitable a1 for nonlinear programming problems with

inequality constraints. In minimax problems, choosing a suitable one is even more

complicated. Next, we will discuss how to choose a suitable a1 for minimax

problems, which is a lower bound of the optimal objective value of (P2).

Let X0 be a box set containing X, where X is the feasible set of (P1). Based on the

particular structure of the minimax problem, consider the following problem:

min
x2X0

fiðxÞ ðPiÞ

where fiðxÞ is a member of ff1ðxÞ; � � � ; fmðxÞg.

Proposition 2.2 For any given i 2 I, let x̂i be the optimal solution of (Pi). Let �x be

the optimal solution of (P1). Then, fiðx̂iÞ 6 Fð�xÞ.

Proof For any x 2 X, we must have fiðxÞ 6 max
i2I
ffiðxÞg. Thus,

min
x2X0

fiðxÞ 6 min
x2X

fiðxÞ 6 min
x2X
fmax

i2I
ffiðxÞgg:

The desired result can be obtained. h

Remark 2.3 By Propositions 2.1 and 2.2, we can choose a1 6 fiðx̂iÞ for an i 2 I.

Obviously, a1 6 fiðx̂iÞ 6 Fð�xÞ ¼ minðx;tÞ2X t. For problem (Pi), an objective function
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fiðxÞ 2 ff1ðxÞ; � � � ; fmðxÞg, which is relatively simple or convex, should be chosen

firstly.

3 Numerical Experiments

In this section, we consider some preliminary numerical results obtained with LOPF

algorithm described in the above section. We perform the numerical experiments on

testing problems taken from the literature [18, 30]. We coded LOPF algorithm in

Matlab 2010b and ran it on a personal computer (CPU: Intel Core2 1.80 GHz,

RAM: 1.99 GB). After a few preliminary tests, the following choices were made and

used on all the test problems.

• The stopping parameters are set to e ¼ 10�4�10�3, and all the initial constraint

parameter is set to q ¼ 102, except for problems 4.12 and 4.13. Set q ¼ 100 and

q ¼ 101 for problems 4.12 and 4.13, respectively.

• The value of a1 is chosen by solving a relatively simple constrained

minimization problem (Pi). All the starting points x0 are taken from the

literature.

• All the minimization problems required to be solved in Step 1 are solved by

implementing a sequential quadratic programming algorithm.

We ran the algorithm on 11 test problems used in [18] and 12 test problems given

in [30]. A full analytical description of the test problems along with the starting

points, the optimal solutions found, and the sources of the problems are given in [18,

30]. In Table 1, we outline the data of all these test problems. In some cases, more

than one starting point is used. Note that we do not use all test problems from

Chap. 4 of [30] because for some of them not all input data are available.

From the results reported in Table 2, we see that the algorithm is capable to solve

all test problems considered. A comparison with the data reported in [18, 30] shows

that our algorithm is capable of reaching at least the same accuracy (for example,

10�3) of optimal objective values reported in [18, 30], except the problem 4.13. We

note that using only the data reported in [18, 30], it is not possible to compare the

efficiency of our scheme with those of [18] and [30]. To make future comparisons

possible, we report in Table 2 some more data which give a more detailed picture of

the computational effort required by our algorithm. More specifically, for each

problem, we report the number of outer iterations (N), the total number of objective

function evaluations (F), the optimal objective values found by LOPF algorithm

(F�), the optimal objective penalty parameters (M�), the last constraint penalty

parameter (q�), and the CPU time.

By 23 numerical examples, we can obtain the following results:

(I) For all test problems, numerical experiments show that an approximate

solution can be found, except problem 4.13, by comparing with existing results

(see Table 1). One significant property of the algorithm is the fact that the

gradient of each function fi need not be computed in every iteration of the
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algorithm. In general, as Mk approaches F�, fewer and fewer elements fiðxkÞ
will satisfy the condition fiðxkÞ[ Mk.

(II) The optimal solutions can be found from different starting points. The present

algorithm shows the robustness. For problem 4, however, a special case occurs

that a local solution was obtained from the initial point (b). The same case also

happened in [18].

(III) It is important to choose the value of a1 which has directly an effect on the

number of function calls. From Table 2, we find that the more the function

calls, the more the time on CPU. So, choosing a suitable a1 by Remark 2.3 is

necessary in practice. In addition, the number of outer iterations is closely

Table 1 Test problems from the literature

Problem n I J þ L Optimal value Starting points

1 2 3 2 1.952 22 (a) (1.0, -0.1); (b) (0.0, 0.0); (c) (2.0, 2.0); (d) (4.0,

-4.0)

2 2 6 2 0.616 43 (a) (3.0, 1.0); (b) (1.0, 3.0)

3 2 3 2 0.0 (a) (3.0, 1.0); (b) (50.00, 0.05)

4 2 3 2 2.25 (a) (2.1, 1.9); (b) (1.9, 2.1); (c) (2.0, 4.0); (d) (4.0,

2.0)

5 4 4 3 -44.0 (a) (0.0, 0.0, 0.0, 0.0); (b) (-2.0, 1.0, -2.0, 1.0)

6 2 3 2 2.0 (a) (0.0, 1.0); (b) (3.0, 1.0)

7 7 5 4 680.630 06 (a) (1.0, 2.0, 0.0, 4.0, 0.0, 1.0, 1.0)

(b) (3.0, 3.0, 0.0, 5.0, 1.0, 3.0, 0.0)

8 2 4 2 0.0 (a) (-1.2, 1.0)

9 2 2 2 2.718 28 (a) (50.00, 0.05); (b) (1.0, 1.1)

10 2 2 2 0.0 (a) (1.418 31, -4.794 62)

11 10 9 8 108.016 69 (a) (2.0, 3.0, 5.0, 5.0, 1.0, 2.0, 7.0, 3.0, 6.0, 10.0)

4.1 2 3 1 -0.389 659 52 (a) (1.0, 2.0)

4.2 2 3 1 -0.330 357 14 (a) (-2.0, -1.0)

4.3 2 3 1 -0.448 910 79 (a) (-1.00, 0.01)

4.4 2 3 1 -0.429 280 61 (a) (-1.0, 3.0)

4.5 6 3 15 -1.859 618 70 (a) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

4.6 7 163 9 0.101 830 89 (a) (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5)

4.7 8 8 1 0.0 (a) (0.125, ��� , 0.125)

4.8 10 6 3 24.306 209 (a) (2.0, 3.0, 5.0, 5.0, 1.0, 2.0, 7.0, 3.0, 6.0, 10.0)

4.10 20 38 10 0.506 947 99 (a) (100, ��� ,100)

4.12 10 9 5 -1 768.807 0 (a) (1 745, 12 000, 110, 3 048, 1 974, 89.2, 92.8, 8.0,

3.6, 145)

4.13 7 13 2 1 227.226 0 (a) (1 745, 110, 3 048, 89, 92, 8, 145)

4.15 16 19 1 174.786 99 (a) (0.80, 0.83, 0.85, 0.87, 0.90, 0.10, 0.12, 0.19,

0.25, 0.29, 512, 13.10, 71.80, 640, 650, 5.70)

Optimal value: optimal objective value of FðxÞ from the literature [18, 30], Start points: different starting

points from the literature [18, 30]

n number of variables, I number of functions fi, J?L number of constrained functions gj and hl
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related to the number of variables. The more the variables, the more the outer

iterations.

(IV) The parameter M approximates the optimal objective value F�. Thus, these

numerical results accord with the results proven in previous section. It is

worth stressing that the penalty parameter M converges to a finite value,

Table 2 Results for test problems

Problem Start N F F� M� q� CPU (s)

1 (a) 13 424 1.952 289 58 1.938 040 1.0e?3 0.406 250

(b) 15 516 1.952 290 02 1.937 805 1.0e?3 0.484 375

(c) 15 521 1.952 267 08 1.937 881 1.0e?3 0.515 625

(d) 19 722 1.952 234 71 1.937 900 1.0e?3 0.640 625

2 (a) 14 562 0.616 443 68 0.602 631 1.0e?3 0.453 125

(b) 14 850 0.616 439 61 0.602 631 1.0e?3 0.546 875

3 (a) 14 539 0.000 024 70 -0.013 392 1.0e?3 0.453 125

(b) 15 579 0.000 008 89 -0.013 986 1.0e?3 0.515 625

4 (a) 13 449 2.249 810 47 2.235 555 1.0e?2 0.421 875

(b) 13 448 4.044 562 38A 4.033 986 1.0e?2 0.406 250

(c) 15 619 2.249 827 05 2.236 023 1.0e?2 0.578 125

(d) 15 574 2.250 102 47 2.236 223 1.0e?2 0.562 500

5 (a) 16 1 300 -43.999 965 52 -44.014 359 1.0e?2 0.734 375

(b) 17 1 162 -43.999 864 48 -44.012 867 1.0e?2 0.718 750

6 (a) 13 549 2.000 061 45 1.985 952 1.0e?2 0.406 250

(b) 17 570 2.000 006 77 1.986 000 1.0e?2 0.531 250

7 (a) 17 4 008 680.648 604 47 680.638 527 1.0e?4 1.515 625

(b) 22 4 645 680.631 401 33 680.617 283 1.0e?4 1.937 500

8 (a) 13 919 0.000 006 31 -0.013 672 1.0e?3 0.578 125

9 (a) 16 747 2.718 306 35 2.704 320 1.0e?2 0.609 375

(b) 17 585 2.718 314 64 2.703 864 1.0e?2 0.562 500

10 (a) 12 463 0.000 000 21 -0.014 298 1.0e?3 0.453 125

11 (a) 21 5 815 108.014 975 68 109.945 009 1.0e?3 2.406 250

4.1 (a) 13 586 -0.389 675 39 -0.403 809 1.0e?2 0.515 625

4.2 (a) 13 535 -0.330 406 17 -0.344 238 1.0e?2 0.578 125

4.3 (a) 13 594 -0.449 077 69 -0.462 889 1.0e?2 0.500 000

4.4 (a) 11 610 -0.429 268 65 -0.443 584 1.0e?2 0.406 250

4.5 (a) 13 1 304 -1.859 658 50 -1.873 474 1.0e?2 0.781 250

4.6 (a) 14 1 519 0.101 887 70 0.097 418 1.0e?3 1.125 000

4.7 (a) 14 2 930 0.000 193 37 0.011 793 1.0e?2 1.578 125

4.8 (a) 20 4 339 24.304 791 98 24.292 490 1.0e?2 2.109 375

4.10 (a) 25 5 482 0.507 053 82 0.493 070 1.0e?2 3.031 250

4.12 (a) 25 8 289 -1 768.805 541 48 -1 768.960 022 1.0e?0 3.531 250

4.13 (a) 22 1 113 1 228.123 059 15 1 228.277 284 1.0e?1 0.734 375

4.15 (a) 19 9 419 174.805 030 07 174.791 084 1.0e?2 4.515 625

A Find a local solution from the initial point (b)
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unlike other penalty parameters increasing to infinity. Moreover, from the

last second column of Table 2, it can be observed that the constraint penalty

parameter q increases gradually to a finite value, up to 104.

In conclusion, the numerical results indicate that the algorithm is promising. The

adaptive objective penalty parameter rule provides a useful mean of approximating

the optimal objective value while the algorithm is ensured of progress toward the

approximate solution.

4 Conclusion

We introduced a new objective penalty function method for the solution of minimax

problems with equality and inequality constraints. The method is approximating an

optimal objective value for an equivalent minimization reformulation of the

minimax problem by a series of smooth, simple problems with only box constraints.

Numerical results reported indicate that the method introduced in this paper can be

numerically efficient. The objective penalty function approach is quite different

from existing proposals for the same class of problems. We think that, besides its

theoretical properties, the proposed algorithm has one distinct practical advantage: it

only requires the use of standard gradient optimization methods for the solution of

smooth optimization problems, and no other complex operations are necessary.
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