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Abstract. In this paper, we give an elementary view of Newton-type methods and related regular-
ity conditions for a special class of nonsmooth equations arising from necessary optimality criteria
for standard nonlinear programs. Different types of linearizations and parameterizations of these
equations lead to different iteration schemes, where any abstract calculus of generalized derivatives
for nonsmooth mappings is avoided. Based on a general local convergence result on (perturbed)
Newton methods for solving Lipschitzian equations, we focus on characterizations which are ex-
plicitly given in terms of the original functions and assigned quadratic problems for our special
setting. We are particularly interested in certain parameterized Newton equations and in regularity
conditions which are weaker than strong regularity.
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1 Introduction

We consider the nonlinear optimization problem
min f(z) subject to g;(z) <0, i=1,...,m; f,g € C*(R",R), (1.1)

and we suppose throughout that D?f, D2g; are locally Lipschitzian (briefly f,g; € C%').
Necessary optimality conditions will be used in terms of Kojima’s function (see [12])
® : R"™™ — R™"™ which has the components

<I>1(x,y) = Df(.’[) + Z?il y;l_Dg’L(‘T)a yj_ = maX{anz’}a (12)
Poi(z,y) = gilz) — Yi y; = min{0,y;}.
Then the zeros of ® are related to the KKT points of (1.1) via the transformations

(z,y) € ®1(0) = (z,u) = (z,y + g(z)) is a KKT-point

(z,u) is a KKT-point = (z,y) = (z,u + g(z)) € ®71(0). (1.3)

Obviously, primal (stationary) solutions are the same in both descriptions, dual ones differ
only in the case g;(z) < 0 which gives u; = 0 but y; = g;(x). The first equation in (1.2)
may also be written as D, L(z,y") = 0, where

Llz,y) := f(=) + 202, vigi(x)

denotes as usual the Lagrange function associated with (1.1). Further, it can be easily
seen that for (a,b) € R"™,

(z,y) € ®(a,b) iff both 3~ =g(z) —b and

(z,y™") is a KKT-point of the perturbed problem (1.4)

min f(z) — (a,z) subject to g(x) <b. (1.5)
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In the present paper, we discuss several versions of Newton-type methods for solving the
key system
O(z,y) =0. (1.6)

This is a subject of active research in the last two decades (we refer, e.g., to [8, 13, 14,
15, 21, 23, 18, 10, 5]). Our purpose is to present an elementary view of different standard
and perturbed Newton schemes and their local convergence analysis, avoiding the use of
prerequisites from nonsmooth analysis. Instead, we strictly utilize the special structure of
the equations (1.2). Further, we also intend to give (as much as possible) a self-contained
presentation of the material. The reader may consult [10, 17, 18] for further details.

In section 2, we start with local convergence analysis of Newton’s method for solving
(1.6) with an arbitrary locally Lipschitzian ® and for a general type of approximation of ®.
In the present form, the result is new and extends Theorem 10.7 in [10]. Then, in section
3, we clarify how to guarantee the conditions in the setting of (1.2). The involved non-
differentiable functions do not make serious problems, since non-smoothness is essentially
that of the absolute value function. Our focus is on subsets of the known Clarke derivative,
this allows relatively simple Newton steps and sometimes regularity conditions weaker
than strong regularity in Robinson’s [22] sense. For comparison, regularity in terms of
directional derivatives is discussed.

The investigations in the sections 4 and 5 are motivated by the following observation.
If one applies Newton’s method directly to (1.2) and yf > 0 holds at the iteration point
(z*,y*) then the Newton system involves the linear equation (assigned to ®s ;)

9i(z%) + Dg;(z*)T(z — 2*¥) =0 (1.7)

since % and y;” vanish at yf’ . Thus, if the number of such ¢ is higher than n, system
(1.7) degenerates and (usually) the method fails to work.

To avoid this effect (which may appear if (z¥,4") is not close enough to a ”regular”
solution), we perturb system (1.6) by adding some appropriate small function or (alter-
natively) deform the matrix of the Newton equations only. In any case, this is some kind
of regularization. As a first idea, one could add a term ey; to function ®9;(z,y) in the
above situation. We shall consider, however, other regularizations which can be handled
surprisingly simple.

The meaning of such regularizations and the permitted amount (for ensuring still
quadratic convergence of the whole method) will be studied in the sections 4 and 5 under
more and less general settings, respectively. In particular, we recall that some of these
regularizations describe just the stationary points in penalty and barrier methods, assigned

o (1.1). So the content of our regularizations becomes evident. On the other hand, the
both classical methods turn out to be specific regularization methods with respect to the
equations (1.7) for yf > 0, only. Finally, we interpret the related Newton steps in terms
of SQP-methods.

2 Newton’s method

In this section we recall basic facts on generalized Newton methods from [10] and extend
convergence estimates for standard Newton schemes to a perturbed one. Throughout
Section 2, we choose a setting more general than in the rest of the paper and consider the
equation

d(z) =0,

where ® : R? — R? is locally Lipschitzian with rank (i.e., with Lipschitz constant) Lg
near a zero z* of ®. Let for any z in some neighborhood Q of z*, D®(z) : RY = R? be a



multivalued mapping (closed or not) satisfying
D®(2)(¢) #0 and D®(2)(0) ={0}.

Suppose that there is some Kr > 0 such that for all z in some ball B(z*, R), the following
condition for the approzimation is satisfied:

(CA)  ®(z) — ®(z") + D®(2)(z* — z) C B(0, Kg|z — z*|)?). (2.1)
Suppose, in addition, an injectivity (reqularity) condition near z*:

(CD)  inf { |[gl] : ¢ € DO(2)(C) } = K]l

for some K7 > 0 and all z in some ball B(z*, ). (2:2)
Then D®(z)(-) may be applied in the following
Standard Newton scheme: Given z* find z*! = 2 such that
0 € ®(zF) + DO(2F) (2 — 2F). (2.3)

Then, if 2*T! exist, the known estimates of the case of C' equations are valid, cf. Theorem
10.7 in [10], namely

12541 — 2% < K 'Kg |28 =27 and 257! — 27| < gl =2

whenever |20 —z*|| < r=min{R, §, JK;' K;}. (24)
Remark 1
1. Tt suffices that (2.1) and (2.2) are satisfied for the iteration points z*.
2. The existence of a solution z#*! for (2.3) is evident if
DO(2)(C) = S(=)¢ = {AC : A€ S(2)} (2.5

holds with a set of matrices S(z) of appropriate dimension (which will be satisfied
for the generalized derivatives considered in the cases 2 ... 5 of (3.3), (3.4) under
intrinsic assumptions, cf. §3.1 below). Then injectivity (2.2) ensures regularity of all
A € S(z) and (2.3) can be solved via ®(2%) + A(z — 2¥) = 0 with any A € D®(2¥).

3. If (CA) holds with Clarke’s generalized Jacobian S(z) = 0®(z) in (2.5), then ® is
called strongly semismooth at z*.

4. For the importance of (CA) and (CI) in general, relations to semi-smoothness [19, 21]
and approximate solutions of (2.3), see [14, 15, 10].

5. If D® satisfies (CA) and (CI) so also all selection functions s®(z) € D®(z) with
s®(2)(¢) € D®(z)(C) satisfy these conditions.

Now we show that the estimate (2.4) can be extended to a perturbed Newton scheme which
we shall need for subsequent perturbations of ®.

Theorem 1 (Perturbations of D®) Suppose (2.1) and (2.2) and consider a perturbed
system
0€ ®(2F) + DO(2F) (2 — 2F) + A¥(z = 2F), FHl.=2 (2.6)

where A* is supposed to be a matriz of suitable order such that
| A¥|| < C ||®(2F)|| for some constant C. (2.7)
Then, the estimates (2.4) are again true, only Kr and K; must be replaced by

Ky =Kr+CLg and Kj = 1K,
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and the radius

r < min{R, §, +(Ky) ' Ki} (2.8)
from (2.4) has, in addition, to satisfy
r < 22{1{(1) where Lo is a Lipschitz rank of ® on B(z*, R). (2.9)
Supplement: Having (2.7), (2.8) and (2.9), then it holds
le(zF 11 < @GN if 127 < K (2.10)
- - 8[«1)}(3%7

and for the special form (2.5) of D®(2¥), the solutions z**1 of (2.6) ewists and can be
obtained by solving ®(2*) + (A + A¥)(z — 2¥) = 0 with any A € D®(2*). <&

Proof. We have from (2.1) and (2.2), for z = 2* with ||z — 2*|| < r = min{R, §, 211((11%},

D®(z)(z* — z) C ®(2*) — ®(2) + B(0, Kg ||z — 2*||*), (2.11)
and ¢ € D®(z)(z* — 2) yields ||¢|| > Kj ||z — z*||. Thus,
I2()ll > Krllz = 2*| = Kr ||z = 2"[* = |2 = || (K1 — Kgllz — 2"|])

which ensures that
Ky

19 = bKdllz ==l e =) < 52k (212)
The latter holds due to (2.8). Since @ is locally Lipschitz, this yields for related z,
sKirllzF =2 < 12(M)] < La|l2* = 2*|I. (2.13)

So (2.7) implies that

IAM]| < CLa|l2* — 27|
With the new derivative D®(2*)(¢)+A*¢ at z¥ and the new constant K, = Kp+CLg, this
ensures in (2.1) the required estimate. In (2.2) we obtain for ¢ € D®(2)(z*—2)+A*(2*—2),

I¢ll = Killz — 2*l = | A*] [z = 2*) = Killz — 2|l = CLoll* — 2*7 = $K; |12 — |,

whenever

Ky
— Sl < i
Il =27 < 2C Lg

Hence (2.8) and (2.9) guarantee all needed estimates to apply (2.4) with the new constants.
Further, injectivity ensures the existence of z¥*! under (2.5) via regularity of all matrices
in S(z*) + AF.

Monotonicity of the error: Having (2.8) and (2.9) then, applying K} = 1K and (2.4)
with the new constants, we obtain

|25+ — 2| < 2K, 'K 28 - 2|2 (2.15)

(2.14)

With || @(z¥11)|| < Lg| 2! — 2*|| and ||2F — 2*|| < 2K || @(2¥)|| from (2.13), it follows
1@z < Lallz*! — 2%|| < 2La K ' K|l 2% — 2*||> < 8La K K [|2(9)]1°. (2.16)
Hence (2.10) is valid. O

Remark 2 By the proof one easily sees that Theorem 1 holds more general. Finite
dimensionality and some particular structure of D® has been used only for the existence
of ZF*1. All other arguments were norm-estimates which hold in Banach spaces, too (then
A¥: X - Y is a linear operator).



3 Representations of D® and the injectivity condition (CI)

Now, as in the rest of the paper, let ® be the Kojima function (1.2). Following [10] where
the details of the subsequent statements can be found, the mapping ® can be written as
a product ®(z,y) = M(z)N(y) where N and M have the form

N(y) = (17 yii_a"'ay;:,’ yl_,---,y;l)T e R

[ Df(z) Dgi(z) .. Dgi(x) ... Dgm(z) 0 .. 0 .. 0
M(m)_< gi(z) R S A S 0) (3.1)

with 2 = 1,...,m and -1 at position z in the last block.

3.1 The functions D®

Since @ is a nonsmooth function, the use of some generalized derivative in Newton’s
method is required. However, nonsmoothness is only implied by the elementary piecewise
linear map N which is basically defined by the components

p(y) = () = Wiy —yh) = 2w + iy — lwil), i=1..,m.  (3.2)

So, our discussions on generalized derivatives will be reduced to the question of how to
define a suitable derivative of the absolute value function s € R — a(s) = |s| at the origin
in direction 0. We consider the following five possibilities:

1. Da(0)(o) = limyjo A a(No),

2. Da(0)(o) ={do: -1 <A< 1},

3. Da(0)(o) ={—0,0}, (3.3)
4. Da(0)(o) = a,

5. Da(0)(o) =

while Da(s)(0) = &/(s)o for s # 0 in all cases. The above listed derivatives immedi-
ately carry over by component-wise definition to the corresponding generalized directional
derivatives Dy(y;)(o) and DN (y)(v) which are set-valued in the cases 2 and 3.

Given one of the five types of derivatives, we now define a (possibly set-valued) gen-
eralized derivative of ® by the usual product rule

Do(z,y)(u,v) := [DM(x)u]lN(y) + M (x)[DN (y)(v)], (3.4)

where DM () denotes the Fréchet derivative of the C' mapping M at .

Similarly, if ) = ¢(x,y) is any function that can be written with differentiable h as
Y(z,y) = h(z,y,|y1],- -, |ym|) we "differentiate” it by combining the usual chain rule with
(3.3).

Because of f,g € C? and the special form of N, D® represents in the cases 1, 2 and
3 certain generalized derivatives which are well-known from the literature, for details of
proving their coincidence with (3.4) in the related case, we refer e.g. to [10, Chapters 6,7]:

In case 1, D® (similarly for Do, Dy and DN) is the usual directional derivative of ® at
(z,y) in direction (u,v), which coincides in our setting with the contingent derivative [1].
In case 2, Da(s)(o) can be interpreted as the Thibault derivative [24, 25] which coincides
with [0a(s)]o, where Oa(s) is Clarke’s subdifferential [3, 4]; these types of derivatives
carry over to Dy, DN and D® and again coincide. The derivative in case 3 results from
applying the so-called (see e.g. [5]) B-subdifferential to a given direction, for brevity, we
call it B-derivative.

In the cases 2...5, condition (2.5) is satisfied, which was essential in Theorem 1 for
ensuring the existence of a solution z**1 of the k-th Newton ”equation”.



3.2 The injectivity condition (CI) at a point and near the solution

For the Kojima function ® (1.2), the assumption f,g; € C%! and the simple structure
of N (and ®) ensure at z* = (z*,y*) € ®71(0) that for all z = (z,y) in some ball
B(z*, R) and all "derivatives” D® given by (3.3) (3.4), there is some K > 0 such that
the approzimation condition (CA) is satisfied.

In contrast, the meaning of the injectivity condition (CI) for the original problem (1.1)
depends not only on the concrete form of ®, but also on the applied derivative.

Given some z* = (z*,y*) € ®71(0), we put

IT={i:y; >0}, I"={i:y; <0} and I°={i:y; =0}
Further, let
Y*={y|®(a"y) =0}

denote the set of multipliers associated with z*.

Regular matrices

In the cases 2, ..., 5 considered in (3.3)-(3.4) above, the injectivity condition (2.2) requires
specific regularity properties of certain matrices G(z,y,p), where p; € {0,1} in each case.

These matrices can be obtained from the product rule (3.4) and have for given (z,y, p)
the following structure:

DiL(z,y") piDgi(z) ... pmDgm(z)

Dgi(z)T —(1 -
S B ) )

Dg(a)T C (-pw)

To see this, let us repeat the main arguments from [10]. Taking case 2 as the basic concept,
we have for p;(y;) = (y;7,y; ) in direction v; that

Dpi(yi) (vi) = {(pivi, (1 —pi)vi) [0 <p; <1} ify; =0
and Dp;(y:)(vi) = {(vi,0)} if y; > 0, but Dy (y;)(v;) = {(0,v;)} if y; < 0. Define
R(y) ={p=(p1,---,pm) €[0,1]" [pi =1if y; > 0, p; = 0 if y; < O}.

Then we immediately obtain in case 2 that

DN(y)(v) ={(0, ...,pivis-ey oo, (L=pi)vi,...) T |p € R(y)} (3.6)
for a given direction v, hence the second term in the product rule (3.4) becomes
> ity piviDg;(z)
=2 (1= pi)v; )

Further, since DM (z) is the standard Fréchet derivative at z, the first term in the product
rule (3.4) is easily computed to be

M (z)[DN(y)(v)] = { ( pe R(y)} :

D?f(z)u ™y D%g;(z)u
[DM(x)u]N(y):< f@)u+ 33",y D?gi(@) )

Dg(z)Tu



Hence, in case 2 (Thibault/Clarke derivative) one has

DMV )+ MEIDNG ) = {6 (1) | perO)} 6D

and injectivity (CI) then means that det G(z,y,p) # 0 holds for each (z,y) near (z*,y*)
and all p € R(y). Clearly, this is true for small distance ||(z,y) — (z*,y*)|| whenever
det G(z*,y*,p) # 0 for all p € R(y*). So the "neighborhood condition” (CI) is satisfied if
it holds true at the solution.

Moreover, the set {G(z*, y*,p) |p € R(y*)} is arc-wise connected, hence det G(z*, y*, p)
has under (CI) the same sign for these matrices. Because each p; appears in exactly one
column and this in a affine-linear manner, the function p — G(z*, y*, p) is affine-linear in
each p;, too. So (by induction arguments) it suffices only to check whether all determi-
nants det G(z*,y*, p) for p € R(y*) and p; € {0,1} have the same non-vanishing sign.

In the cases 3-5, the formulas (3.6) and (3.7) remain true after restricting R(y) to
such p satisfying for y; = 0 the special settings p; € {0,1} (case 3), p; = 1 (case 4) and
pi; = 0 (case 5), respectively. This immediately leads to the following characterizations of
injectivity (2.2) at a point z = (z,y). We denote this property by (CI),.

Case 2 (Thibault/Clarke derivative): The condition (2.2) is equivalent to the requirement
that sign det G(z*,y*, p) is constant and not zero for all p satisfying

pi=1ifiel", pc{0,1}ificl® p=0ifiecl . (3.8)
Case 3 (B-derivative): (2.2) is equivalent to det G(z*,y*, p) # 0 for all p from (3.8).

Indeed, (2.2) is equivalent to det G(z,y,p) # 0, i.e., (CI), for z = (z,y) near (z*,y*)
and all p € R(y). Since R(y) C R(y*) for y near y*, so the pointwise condition (often
called B-regularity) is sufficient and necessary.

Case 4 (Da(0) = 1): (CI), is equivalent to det G(x,y, p) # 0 for some particular p, namely
pi=1ify; >0, p;=0ify; <O.

Case 5 (Da(0) = —1): Similarly, (CTI), is equivalent to det G(x,y,p) # 0 for p with
pi=1ify; >0, p;=0ify; <O0.

In the cases 4 and 5, the considered selections p(y) of p € R(y) are not continuous. So the
related conditions for z* = (z*,y*) cannot be extended on a neighborhood. On the other
hand, the (pointwise) condition of case 3 is, of course, again a sufficient one for ensuring
(2.2) in the cases 4 and 5.

Case 1 is omitted here, since the resulting Newton auxiliary problems become linear com-
plementarity problems and the crucial matrix properties become more complicated. For
details, we refer to [5] or [10, §7.4.1].

(CI) and quadratic approximations

Depending on D®, the injectivity condition (2.2) or the injectivity (CI),- at a solution
point z* = (z*,y*) € ® '(0) have also meanings in view of stability of the perturbed



problems (1.5) at z*.

Case 1: For the contingent (directional) derivative of ®, (CT),~ characterizes just both
the upper regularity (4.2) along with uniqueness of the Lagrange multipliers Y* = {y*}
(strict MFCQ). In addition, violation of (CTI),- (and hence of (2.2)) is particularly implied
by violation of the upper Lipschitz property (4.2) (i). The latter means that there is a
non-zero KKT-point (u,v) for the quadratic problem

Hbin %uTDiL(x*,y"')u st. Dgi(z)Tu=0Vie I, Dgj(z*)Tu<0Viel,
for the proof see [10, Cor. 8.18].

Case 2: With the Thibault-derivative or S(z) = 0®(z) (Clarke’s Jacobian [3]) in (2.5),
condition (2.2) is equivalent to strong regularity of problem (1.1) at z* = (z*,y*) in
Robinson’s sense [22], i.e., ®~! is locally unique and Lipschitz near (0, z*).

In addition violation of (2.2) means that there is a non-zero KKT-point for some of
the quadratic problems

Q7 : min %uTDgL(ac*,yJ“)u s.t. Dgi(x*)Tu =0Vi e J, Dgi(x*)Tu <0Viel® \ J,

U

where It C J C ITUI°, cf. [22] or [10, Cor. 8.8]. Similarly, one treats the following cases.

Case 3: For B- derivatives, singularity means that there is a non-zero KKT-point for
some of the quadratic problems

P;: min Ju"DIL(z*, " )u st Dgi(x*)Tu=0 ifieJ

u

where It c J c It U I°.

Case 4: Da(0) = 1: Let us use this "derivative” for differentiating N and computing
D@ in accordance to (3.4). Considering again the matrix G(z*,y*,p) one obtains that
(CI),~ is violated iff there is a non-zero KKT-point (u,v) of the quadratic problem

min %uTD?UL(;U*,y*"')u st. Dgi(z)Tu=0 ifiel®UI”.
u
Case 5: Da(0) = —1: Now the related quadratic auxiliary problem has less constraints

muin %UTDC%L(m*,y*"')u st. Dgi(z)Tu=0 ifielt, (3.9)

and violation of (CI),- is equivalent to the existence of a non-zero KKT-point of (3.9).

Obviously, the existence of a particular KKT point (u,v) with u = 0 and v # 0 means
in all cases that {Dg;(z*), i € I'"TUI"} is linearly dependent, i.e., the linear independence
constraint qualification (LICQ) is violated at z*.

By all means, for the most elementary cases 4 and 5, condition (CI),~ is weaker than
for the cases 2 and 3.

4 Perturbations of the Kojima function

In this section, we study general and special parametrizations ® of the Kojima function
® and apply this to the standard and perturbed Newton method for solving the original



Kojima system. Given some point z*, let the following hypotheses be satisfied:

(1) x* is a local minimizer of (1.1) satisfying MFCQ,
(i) uw' D2L(z*,y*)u >0 Vy* € Y* VYu € U*\ {0},
where
U* = {u] Df(a:*)Tu =0, Dgi(x*)Tu <0Vi:gi(z*) =0}

is the usual critical cone at z* and Y* denotes the set of all (dual vectors) y satisfying
®(z*,y) = 0. By (i), Y* is nonempty and bounded. Condition (ii) is a standard second-
order sufficient optimality condition for (1.1).

Under (4.1) the (multivalued) inverse ® ! is locally Lipschitzian upper semi-continuous
and nonempty-valued in the following sense, cf. [10], Corollary 2.9 and Theorem 8.36.

Lemma 1 Suppose (4.1). Then there are positive r,c and p such that the locally inverse
sets H(a,b) ={ (z,y) € @ Ya,b) | |z —z*|| < } satisfy

0# H(a,b) C (z"Y") + c|(a,0)[I1B if [(a,b)]| < p. (4.2)

)

Here and in the rest of the paper, (X,Y’) denotes the cartesian product of the sets X and
Y, while (z,Y) = ({z},Y). The Lemma ensures persistence and some stable behavior of
the KKT-points under small (simple, canonical) variations of the initial problem according
to (1.5),

min f(z) — {(a,z) subject to g¢g(z) <b.

Remark 3 Since @ is continuous and Y* is bounded, the mapping H is closed on the ball
B(0, p). Therefore, if ® !(a,b) is convex or if the component x in H(a,b) is unique then
H is trivially closed, convex-valued and uniformly bounded for (a,b) near the origin.

4.1 Parameterized functions ¢!

We shall consider general and particular perturbations of ® that arise from nonlinear
variations (z,y,t) € R"™™, where t € RP (some parameter space),

D'(z) = ©(2) — (=), z=(,9). (4.3)
We suppose (for particular examples see section 5)

1 is continuous, and for each (z,1),
(-, t) is globally Lipschitz with a rank L(t) < Cy||t]],
1(z,0) = 0 and a Lipschitz condition of the type
14(2,') = (2, 1) || < K|z]| [|" - ¢]| holds true.

Then 1(z,t) vanishes for bounded z and ¢t — 0, and

1D (- 1) || := sup{{|w]| | w € D (., )]} < Cy |lE]

holds for all mentioned generalized derivatives D (Clarke, Thibault, Contingent and B-
derivative).

In order to apply the same simple ”derivatives” (3.3) to (., t) we also suppose that
can be written as

PY(z,y,t) = h(z,y,|y1|, -y [Ym|, t)  with some h € c>! (4.5)



and that we ”differentiate” it by combining the usual chain rule with (3.3). By this
convention we can use 1(z,t) for the following general

Solution scheme ALG1 :

Given z* = (2*,4*) and some constant C, choose any t(k) such that

It(E)|| < C ||®(z*)|| and find some z which satisfies the perturbed ”equation” (4.6)
0 € ®(zF) + DO'F) (2K) (2 — 2F), 2K+ =2

Here, the parameter ¢ does not appear in ®(z*). So we are dealing with a perturbed
Newton method in the sense of Theorem 1 and the function v can be used as some
regularization of the ” Newton matrix”.

Clearly, for stabilizing the solution method, we are mostly interested in functions
which induce that the new (perturbed) system (1.7) is always solvable (even if the iteration
points are far from the solution). Examples will be given below.

Corollary 1 Suppose that D®, D®! is defined by one of the derivatives 2...5 of (3.3)
and D® fulfills the regularity condition (2.2). Then, for sufficiently small ||z' — z*||, the
algorithm (4.6) generates a sequence satisfying

|25+ — 2| < comst ||2F — 2|2

Proof. In all cases, we have D®"K) (2F) ¢ D®(2F) + || D,y (., t(k))||B and, due to f,g; €
C%! and (4.5), condition (CA) holds in the settings (1.2) and (4.3), for ¢ near the origin,
with uniform constants. Because of the choice of ¢(k), it holds

D' (%) C D(2")+|| D3 (-, 1 (k)| B C D®(2")+Cyllt(k)|| B C D®(*)+CyC| (") B.

Therefore, every matrix M € D®'*)(2*) belongs to D®(z*) + AF with some A* such that
| A¥|| < CyC||®(2*)||, whereafter Theorem 1 ensures the assertion. O

Notice that Theorem 1 can be applied for further estimates.
For understanding the modified Newton steps, we are going to discuss the resulting
embedding equation

d'(2) =0 (4.7)
which can be also used for obtaining a next iteration point z**! via
0 € ®2F) + D! (ZF) (2 — 2F), t=t(k). (4.8)

This way is the traditional one, denote the resulting solution scheme by ALG2. For
sufficiently small errors ||z¥ — 2*|| the iterates z*T! are close to some path of solutions to
d(z) =0 for t — 0.

However, since both ®(z*) and D®(z*) have been perturbed in (4.8), the approxima-
tion has to be better than in algorithm (4.6), namely

1E(R)] < o(@(25)), (4.9)

in order to ensure superlinear convergence, cf. [10], ch.10.1.1.
To see the necessity of this higher accuracy (in general), it suffices to identify D®?(z¥)
with a fixed regular matrix.
In addition, one may compare the ”"embedding Newton equation” (4.8) and the con-
dition in (4.6),
0 € ®(zF)+ DO (*) (2 —2%),  t=t(k),
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by writing
(a,b)" = @'(z) — @(=*) = —p (", ).

This shows that (4.8) means 0 € [(a,b)7 + ®(2*)] + D®*(2*)(2 — 2¥). Thus the latter
Newton ”equation” (with matrix approximation) is not directly assigned to the original
problem but to some of the canonically perturbed problems (1.5).

Next we shall use that (4.7 ) is always related to a fixed point condition since

Bl(2) =0 & B(2) =9(z,t) & z€ Hy(z) := 0 ((z,1)). (4.10)

4.2 Existence and behavior of solutions

Theorem 2 (zeros of ®!). Under the general assumptions (4.1) and (4.4), one has:

(i) There exist positive constants K,e and 0 such that all zeros z; = (x,yt) of (4.7)
with ||xy — x*|| < e satisfy

dist ((z¢, ye), (2, Y™)) < K||t|| whenever ||t|| < 0, t € R™. (4.11)

(ii) Suppose in addition that there is some B > 0 such that, for all (a,b) € B(0, ), the
canonically perturbed problems (1.5) have conver KKT-sets KKT(a,b). Then, for
each € > 0, there is some § > 0 such that, whenever ||t|| < &, some zero z; of (4.7)
with ||z — z*|| < € exists.

(iii) If strong regularity in Robinson’s sense [22] is valid at a zero (z*,y*) of ®, then the
constants in (i) exist in such a way that related zeros z of (4.7) with ||z —z*|| < ¢
uniquely exist and satisfy

lze — z|| < K||t' —t|| for all t,#' € B(0,6) and § > 0 small enough. (4.12)

Proof. The statements (i) and (iii) follow from Corollary 2.9, Corollary 4.4 and Theorem
8.36 in [10], since the map (-, t) is an arbitrary small Lipschitz function in the C%!-norm.
To prove (ii), we simplify the proof in [17], Theorems 2.4, 2.5. By Lemma 1 and Remark
3 there is a compact convex set C such that () # H(a,b) C C C R™™™ for sufficiently small
l(a,b)||, say for ||(a,b)|] < 8" < B. Moreover, H is closed and convex-valued on B(0, 3).
Define the map
HE(2) = H(p(2 1)) € R¥™

for z € C. If ||t|| < 6 and § is small enough, we have ||1(z,t)|| < B, so HE is again
closed and convex-valued and maps C into C. Hence H/ has (Kakutani) a fixed point
2% € HF(2"). This means by definition that the assigned Kojima point (zf,y") satisfies
(4.10). Using again (4.11) we see that z;y — z* as t — 0. O

Remark 4

1. Assertion (ii) of the preceding theorem trivially holds for convex problems, since
their KKT-sets are convex.

2. The convexity of the KKT-sets under (ii) can be replaced, due to Remark 3, by
supposing that component z for (z,y) € ®~!(a,b) and ||z — z*|| < r (with some

r > 0) is unique.
For conditions (weaker than strong regularity) which describe this property we

refer e.g. to [12] (strong stability in Kojima’s sense), [7] (isolated zeros of metri-
cally regular Lipschitz functions) and [11] (strong Lipschitz or Kojima’s stability of
stationary solutions). However, the given answers are still not complete.

3. Statement (i) has an interesting application for Lipschitz estimates of primal-dual
solutions for the standard log-barrier method in the absence of LICQ, see [9].
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In §5.1 we shall see that the Lipschitzian inequalities (4.11) and (4.12) may compare
solutions of different methods. The foregoing theorem says that anyway this can be done
in a Lipschitzian manner.

5 Particular parametrizations

The general parametrization includes interesting special cases like

Pi(z,t) = 0, vai(z,t) = tiy;" (5.1)
and
Y1z, t) = —tom, thai(z,t) =t; >, yF (5.2)
or ( )
Yri(z,t) = —t;j x; j=1..,n
Q,bQ’Z‘(Z,t) = _tn+i Ys 1 = 1, ey M (53)

It is known that the system (4.7) ®(z) = 0 for (5.1) and (5.2) is closely related to penalty
and barrier methods for problem (1.1), see [16, 17] or [10, §11.1]. In the first subsection,
we will summarize some related interpretations and transformations from the mentioned
literature. In §5.2, we will specify the Newton steps for ALG 1 and ALG 2 discussed
above under perturbations (5.1), and this for the cases 2...5 of linearizing the (perturbed)
Kojima system.

In the remainder of the paper, we will restrict ourselves to the system (4.7) ®(z,y) =0
under the perturbation (5.1). To indicate this clearly, we rename ®! in this situation by
F'. Hence, we consider for + € R™ the zeros of the function

Fi(,y) = Df() + v Da()

5.4
Fi(y) = gi(@) v, — iy (5.4)

For given ¢, we know that F'(z,y) = M(z)N'(y), where M(z) is the matrix (3.1), and

NYy) = (1, 4 s 0y U7 + YT s oo U + tmyi) T € RIT2T,

Following the arguments in §3.2, we then have in the case 2 according to (3.3), (3.4) that
the (generalized) derivative at (z,y) has the form

DFa)(0) = {6lep) (1) e R} (55)

where again R(y) = {p = (p1,...,pm) € [0,1]™|p; = 1 ify; >0, p; = 0 if y; < 0} and
G(z,y,p,t) is the matrix

D3 L(z, y:) pDgi(z) ... PmDgm ()
Dg () —(1=p1 +tip1)
ng(m)T _(1 — Pm +tmpm)

In the cases 3-5 of choosing a generalized derivative according to (3.3), (3.4), the formula
(5.5) has to be modified, again by restricting R(y) to such p satisfying for y; = 0 the
special settings p; € {0,1} (case 3), p; = 1 (case 4) and p; = 0 (case 5), respectively.
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5.1 Relations to penalty-barrier functions under perturbation (5.1)

Consider the system F(x,y) = 0, with F* in (5.4), and fix the perturbation parameter ¢.

Quadratic Penalties: Suppose t; > 0 Vi. Then any zero (z,y) of F! under the
perturbation (5.1) has the following property:

The point z is stationary for the well-known penalty function

Py(x) = f(z) + 5 ; t; 'gil2) T

Conversely, if z is stationary for P(z), then (z,y) with
y; =t gi(w) for g;(x) > 0 and y; = g;(z) for g;(z) <0

solves (4.7). Thus applying the penalty method based on P;(z) for #; | 0 or solving F* = 0
for the same ¢, mean exactly the same.

Quadratic and logarithmic barriers: Suppose t; < 0 Vi. Let z = (z,y) solve
F'(z) = 0 under the perturbation (5.1) and put J(y) = {i | y; > 0}. Then (z,y) has the
following properties:

The point z is feasible for (1.1), fulfills g;(z) < 0 Vi € J(y)
and is stationary for the function (5.7)

Qi(z) = f(x) +% Ziej(y) t;l[gi(w)i]Z-

Conversely, having some z with the properties (5.7), imposed for any index set J C
{1,...,m}, the point (z,y) with

yi =t 'gi(z) (i € J) and y; = gi(z) (i € {1,...,m}\J)

is a zero of F'. The zeros (z,y) of F*, for t; < 0 Vi, can be also characterized by logarithmic

barriers:
The point z is feasible for (1.1), fulfills g;(z) < 0 Vi € J(y)

and is stationary for the logarithmic barrier function
Biy(z) = f(z) + ZieJ(y) ti (?/{F)2 In(—g;(z)).

For t; — —0, the factors s; = t; (y;")? vanish (since y remains bounded due to MFCQ)

as required in usual log-barrier settings. However, for inactive constraints g;(z*) < 0, we
obtain y! < 0 from convergence of the perturbed Kojima points, hence constraint 7 is not
included in the sum Bj ,(z).

Unchanged constraints: If some component of ¢, say t;, is zero, then the line
g1(z) —y; in Kojima’s function (1.2) remains unchanged. This means that the first
constraint gi(z) < 0 is still explicitly required and the term y; FDgi(z) as usually appears
in the Lagrange condition.

5.2 Particular Newton realizations under perturbation (5.1)

Let us start with the Newton scheme of ALG2 (4.8) which includes also the standard
Newton step when setting ¢ = 0. Given any (z,y,t) € R™*?™ we then look, in the cases
2 ... 5 of the settings (3.3), (3.4) of generalized derivatives DF*, for a solution (u,v) to
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the equation
0 = F'z,y) +G(z,y,p,t)(;)

DyL(z,yT) + D2L(z,y")u + Yot piviDgi(z)

9i(z) — y; — tiyt + Dgi(z)Tu — riv;

where G(z,y,p,t) (%) € DF'(z,y)(u,v), and p belongs to R(y) and
ri=1—pi+tipi=1—1—t)p;, i=1,....,m.
Note that for given (z,y,t) and p € R(y) we have

yz<0 = pZZO 3 ’f‘i:].,
vi>0 = p=1 , r=t,
=0 = p € [07 1] ) ri:l_(l_ti)pi‘

This implies that r; = 0 is only possible for y; > 0 and p; > 0, namely if
(yy=0and 1=(1—¢;)p; ) or (y; >0 and t; =0),
and that r; # 0 yields, by discussing y; < 0, y; > 0 separately,
by bi

y; =0 and y;“ == (tzyj+y;)
T Ty

Setting, for i € {1,...,m },
K :={i|lr;=0}, J:={i|ri#0},

then the i-th equation of the second row (5.8) becomes

i€ K:  gi(x)+ Dgi(z)Tu = 0,

i€ J: vi = [9i(2) + Dgi(x)Tu —y; — tiy]/ri.
So the system (5.8) carries over to

gi(x) + Dgp(z)Tu=0 (k€ K)
along with the linearized Lagrange equation
0 = D,L(z,y") + DiL(z,y")u + 3 prorDg(z)
+3; B (9i(z) + Dgi(x) "u — yi — tiy ) Dgi(x).

Taking (5.10) into account, one has

DyL(z,y*) =3, B (yi +tiy;)Dgi(x) = DyL(z,y™) — X5 i Dgi(x),

and, by using the form of D,L(z,y™), (5.14) then becomes

0 = Df(z)+ Xk ys Dor(x)
+D;L(z,y " )u + 32, ¥ (9i(z) + Dgi(2) "u) Dg; ()
+ > i Pk Dgi ().
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The involved term
DiL(z,y")u + X5 B (gi(z) + Dgi(x) "u) Dgi(x)
is the derivative of the quadratic function
Qu) = 5 (u"DiL(z,y")u+ 3, B (9i(z) + Dgi(w) "u)*) (5.16)
with a quadratic form that includes deadic products
3 (DiL(z,y") + 3, % Dgi(x)Dgi(z)" ).
Notice that indices ¢ with y; < 0 (implying p; = 0) do not play any role in this context.

Theorem 3 Let (z,y,t) € R"™™ and p € R(y), and let r, K, J and Q(u) be according
to (5.9), (5.11) and (5.16), respectively. Then (u,v) solves the Newton equation (5.8) if
and only if, with some A\ € RYK (4, \) is a KKT point of the quadratic program

min Q(u) + ¢'u s.t. gi(z) + Dgp(z)Tu=0 (k€ K), (5.17)
u
where c = Df(x) + Y, y]j;ng($). The vector v is then given by the components
Az/plu 'Lf (NS K7
v = T _ 4 o
(9i(z) + Dgi(x) v —vy, —tyy; )/ri, if i€J.
Moreover, supposing t; # 0 Yi and using particularly p; € {0,1} (like for the cases 3, 4, 5

of (3.3) with derivative (3.4)) then (5.17) is an unconstrained program, i.e., K = (), where
the ratios p;/ri, i € J, appearing in the definition (5.16) of Q(u) become

in case 4, = in case 5. (5.18)

1 . 1 .
P % if yi >0 i % ify; >0
0 0 ify; <0

<

Proof. We showed by (5.13) and (5.15) that system (5.8) is the KKT system of the
problem (5.17), with A\, = pxvg, & € K, being the Lagrange multipliers of this program.
The form of v;, i € J, follows from (5.12), while k¥ € K implies py # 0 and hence
v = Ag/pr. The form of ¢ follows from (5.15).

Moreover, if p; € {0,1} then (5.9) gives r; € {t;,1}, hence K = (), by assumption on
t;. Finally, (5.18) follows via the definition of r; in (5.9) directly from the settings p; = 1
for y; > 0 in case 4 and p; = 0 for y; < 0 in case 5. O

Let us finish this section with the Newton scheme of ALG1 (4.6) which requires in the
cases 2 ... 5 of the settings (3.3), (3.4) of generalized derivatives DF" to look for a solution
(u,v) of the equation

0 = F(m,y)+G($ayaPat)(g)

Dy L(z,yT) + D:L(z,y")u + Yo piviDgi(z)
(5.19)

gi(z) — vy, + Dgi(x)Tu — T;
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where G(z,y,p,t) (Z) € DF'(z,y)(u,v).

The only difference to the analysis before Theorem 3 consists in the (now disappearing)
term #;4;" in the second row. Identifying this term with 0 (particularly in (5.12) and (5.14))
and repeating the above arguments, we obtain due to (5.10),

Theorem 4 Let (z,y,t) € R"™™ and p € R(y), and let r, K, J and Q(u) be according
to (5.9), (5.11) and (5.16), respectively. Then (u,v) solves the Newton equation (5.19) if
and only if, with some X\ € RYK (4, \) is a KKT point of the quadratic program

min Q(u)+c'u st gi(z) + Dgp(z)Tu=0 (k€ K), (5.20)
Uu
where ¢ = Dy L(z,y™"). The vector v is then given by the components

T @) + Do) Tu—y )i, if i€,

Moreover, supposing t; # 0 Yi and using particularly p; € {0,1} (like for the cases 3, 4, 5
of (3.3) with derivative (3.4) ) then (5.20) is an unconstrained program, i.e., K =0, and
(5.18) similarly holds. <&

Comparing the form of ¢ in the last theorems, the difference consists in using a reduced
Lagrangian in Theorem 3 and the full Lagrangian in Theorem 4.

6 Conclusions

We obtained that perturbed Kojima systems and perturbed Newton steps related to them
describe different approaches for finding stationary solutions of nonlinear programs, in par-
ticular barrier and penalty methods, sequential quadratic programming and nonsmooth
Newton methods, too. The latter can be reduced to the type of derivative being defined for
the absolute value at the origin. Here, the simplest settings require the weakest (Newton-)
regularity conditions. Transformations between the iterations points of the related meth-
ods have been explicitly given. The permitted size of the perturbations depends on whether
only the generalized derivative (in the Newton scheme) or the whole function is perturbed.
In the first case (ALG1), the perturbations may Lipschitzian decrease, measured by the
original error. In the second one (ALG2), superlinearly vanishing parameters must be
choosen in order to obtain superlinear local convergence of the whole method. The second
situation is less desirable since the "regularization effect” then disappears faster.
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