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THE DIFFERENTIAL CORRECTION ALGORITHM FOR 
RATIONAL too-APPROXIMATION* 

I. BARRODALE,J M. J. D. POWELL: AND F. D. K. ROBERTSt 

Abstract. The version of the "differential correction algorithm" that is most used at the present 
time is a modification of the original version, perhaps because it has been proved that the modified 
version has sure convergence properties. However, the purpose of this paper is to direct attention 
back to the original version. It is now proved that the original version also has sure convergence 
properties. Furthermore, we prove that its rate of convergence is quadratic. This makes it superior 
to the more popular, modified version of the algorithm. Some numerical examples are given to compare 
the two versions, and these leave little doubt that the original algorithm is much better in practice. 

1. Introduction. We consider the problem of approximating a given real- 
valued function f(x), on a discrete point set X = {X1, X2, , XN}, by a rational 
function 

m n 

(1.1) R(x) = P(x)/Q(x) = y pix' / qjx, 
i=O j=O 

where the integers m and n are given. We wish to calculate the values of the 
coefficients pi, i = 0, 1, , m, and qj, j = 0,1, , n, that, subject to the 
condition 

(1.2) Q(xt) > 0, t = 1, 2, ,N, 

minimize the quantity 

(1.3) max If(xt) - R(xt)l = lf - RII. 
1 _t<N 

This problem need not have a solution, but where necessary we assume that the 
functionf(x) is such that a solution exists. 

In this paper we study and compare two versions of the differential correction 
algorithm for minimizing the expression (1.3). Both versions of the algorithm 
generate a sequence of approximations, Rk(X) = Pk(X)lQk(X), k = 1,, 2 
Of course, the two versions generate different sequences, but we prefer not to use 
a notation that distinguishes the two sequences. For either version we let Ak be 
the current maximum error 

(1.4) Ak = max If(xt) - Pk(xt)/Qk(Xt)I, 

and in both cases Ak, k = 1, 2, ... , converges to the minimax error 

(1.5) A* = inf max If(xt) - P(xt)/Q(xt)l, 
P,Q t 
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494 I. BARRODALE, M. J. D. POWELL AND F. D. K. ROBERTS 

where Q(x,) > 0, t = 1, 2, . , N. Even when the given problem has no solution, 
A* is well-defined, and Ak still converges to A*. 

The popular version of the differential correction algorithm (DC say) is 
described by Cheney and Loeb [3], Cheney and Southard [4], Cheney [1] and by 
Rice [6]. It calculates Pk, (x) and Qk 1(x) by minimizing the expression 

(1.6) max {If(x,)Q(x,) - P(x,)l - AkQ(xt)}, 
t 

where Ak is defined by (1.4). However, in the original version (ODC say) Pk, 1(x) 
and Qk? 1(x) are calculated to minimize the expression 

(1.7) max If (xt)Q(xt) - P(xt)l - AkQ(xt) 1 
tt Qk(Xt)J 

(Cheney and Loeb [2]). 
Unless Ak = A*, it happens that P(x) and Q(x) can be found such that expres- 

sions (1.6) and (1.7) are negative. Therefore, because these expressions are 
homogeneous in the required coefficients pi, i = 0, 1, * * , m, and qj,j = 0, 1, , n, 
a normalization condition is necessary. In this paper we impose the condition 

(1.8) maxlqjl=1, j=0,1, *-,n. 

There are three main advantages of the differential correction algorithm 
over the Remes algorithm (see Rice [6] for instance) for computing rational 
{.0-approximations. The first is rather weak, and it is that the subproblem of 
minimizing expression (1.6) or (1.7) is a finite calculation, because it yields to 
linear programming methods. The second advantage is guaranteed convergence 
from any starting approximation subject to condition (1.2). Thirdly, on every 
iteration the condition (1.2) is maintained automatically by the definition of 
Pk+ l(X)lQk+ l(X). 

In spite of these last two properties, the Remes algorithm is in more frequent 
use at the present time, probably because the iteration (1.6) converges only 
linearly. However, we show in ? 2 that the iteration (1.7) converges quadratically. 
Therefore it is likely that the ODC algorithm will be especially useful for solving 
some of the problems that are awkward for the Remes algorithm. 

As well as the quadratic convergence theorem, the guaranteed convergence 
from any starting approximation subject to condition (1.2) is proved in ? 2. Then 
in ? 3 some numerical examples are given that show very clearly that the ODC 
algorithm is better than the DC algorithm. 

2. Theory. The theorems given in this section apply to the ODC algorithm, 
which defines Pk+ l(x)/Qk+ 1(x) by minimizing expression (1.7), subject to condition 
(1.8). Theorem 1 states that each iteration improves the current approximation, 
Theorem 2 shows that the sequence Ak, k = 1,2, .., converges to A*, and 
Theorem 3 proves that the rate of convergence is at least quadratic. (For the DC 
algorithm we can also show that Theorems 1 and 2 hold, but that now the rate 
of convergence is at least linear. Cheney [1] proves these results for the DC 
algorithm in the case of approximation on an interval.) 
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THE DIFFERENTIAL CORRECTION ALGORITHM 495 

Before proving these convergence theorems for the ODC algorithm, we shall 
first provide some insight into the derivation of expression (1.7). This motivation, 
which comes about by expressing a product of two quantities by the linear terms 
in a Taylor series expansion, also suggests that the rate of convergence of the 
algorithm is quadratic. 

For any choice of P(x) and Q(x) satisfying (1.2) and (1.8), let A be a number 
for which the inequality 

(2.1) If(xt) - P(xt)/Q(xt)l ?! A 

holds for all t. Expression (2.1) can be rewritten as 

If(xt)Q(xt) - P(xt)l < AQ(xt) 

(2.2) < AkQk(xt) + (A - Ak)Qk(Xt) + (Q(xt) - Qk(Xt))Ak 

for each value of t. Finally, canceling the first and last products on the right 
side of (2.2) and rearranging the remaining terms, we observe that 

(2.3) max if (xt)Q(xt) - P(x,)l - AkQ(Xt) + A <A 

Thus, from (2.3), the quantity A is minimized approximately by computing the 
minimum of (1.7). 

THEOREM 1.' If Qk(X) satisfies conditions (1.2) and (1.8), and If Ak # A*, then 
Ak+ 1 < Ak and Qk+ l(x) > O, t = 1, 2, - - , N. 

Proof. Let P+(x)/Q+(x) be any approximation, satisfying conditions (1.2) 
and (1.8), whose maximum error on {X1, X2, * , XN} is less than Ak, and let 
this maximum error be A+. We let q + be the number 

(2.4) 17 + = min Q + (x,), 

and we note that it is positive. Moreover we require the definition 
n 

(2.5) M = max Z Ixtli, 
t j=O 

because M is the greatest number that can be attained by a polynomial Q(x) of 
degree n on the point set {X1, X2, , XN}, subject to the normalization condi- 
tion (1.8). 

The proof of the theorem depends on the remark that, because of the definition 
of k?+ 1(x)/Qk+ 1(X), the inequality 

If (Xt)Qk+ l(X) - Pk+ l(Xt)I AkQk+ -X) 

max Qk(Xt) X 
(2.6) ? max{f(Xt)Q?(xt) -P+(xt)l - AkQ+(Xt)} 

'The proof of this theorem is similar to that given in [2] for the DC algorithm. 
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holds. Now, from the notation given in the last paragraph, the right-hand side 
of this inequality satisfies the condition 

max{ f(x) - (x) jQk(X) < max {[A - Ak Q(t)} 

=-[Ak - A+]1min{Q j(x} 
t {Qk(Xt)} 

(2.7) < -1 +[Ak - A+]/M. 

Therefore, from expressions (2.6) and (2.7), it follows that for all t the inequality 

(2.8) AkQk? l(Xt)/Qk(Xt) > ? [Ak - A ]/M 

holds, so we have proved that Qk+ 1(Xt) > 0, t = 1, 2, ... , N. 
To prove the other half of Theorem 1, we note that inequalities (2.6) and (2.7) 

also imply that the condition 

(2.9) {If(Xt)Qk+ l(Xt) - Pk+ l(Xt) - AkQk+ l(Xt)}/Qk(Xt) < 0 

holds for all values of t. Therefore, because Qk(xt) and Qk+ (xt) are positive, we 
deduce the inequality 

(2). 10) lf(xt) - Pk+l(Xt)/Qk+l(Xt)l < Ak, t = 1,2, , N. 

The statement of the theorem, Ak+1 < Ak, is now an immediate consequence of 
the definition of Ak+ 1 (see (1.4)). 

THEOREM 2. The sequence of maximum errors Ak, k = 1, 2, * , converges 
to A* (see (1.5)). 

Proof. Theorem 1 shows that the sequence Ak, k = 1, 2,..., decreases 
monotonically, and it is bounded below, so it has a limit A say. To prove the 
theorem we suppose that A > A*, and we arrive at a contradiction. Following 
the notation of Theorem 1, let P+(x)/Q+(x) be any approximation, satisfying 
conditions (1.2) and (1.8), whose maximum error in X, A+ say, is less than A. 

Inequalities (2.6) and (2.7) imply that, for t = 1, 2, * *, N, the condition 

(2.11) f(xt) - Pk+1 
(Xt_Ak<() - [Ak - 

AM 
] Qk(Xt) (2.11) f.(x~) -Qk?l 1(Xt) 

- k? M Qk?l 1(Xt) 

holds. It is convenient to introduce a notation, 4k say, for the member of the set 
{X1, X2, * * * , XN} for which Qk(Xt)/Qk + 1(Xt) is least. Therefore expression (2.1 1) 
implies the inequality 

(2.12) Ak?+ - Ak < - - A ] Qk(4k) 

Since the sequence Ak, k = 1, 2, * , converges and A > A + we have that 

(2. 13) lim Qk(4) 
-0. k - ? Qk+1(4k) 

We now show that this statement leads to a contradiction. 
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THE DIFFERENTIAL CORRECTION ALGORITHM 497 

From inequality (2.8) we deduce the bound 

Qk + 1 (XI) ? Qk(Xt)u + [Ak - A ]/MAk 

(2.14) > cQk(xt), t = 1,2, ., N, 

where c is the positive constant 

(2.15) c = min [2j, il + - A +)/M-], 

and, believing statement (2.13) for the moment, we let K be an integer such that 
the inequality 

(2.16) Qk(4k) < CNQk+ 1(4k) 

holds for all k > K. Then from expressions (2.14) and (2.16) we deduce the 
inequality 

N N-1 N 

H Qk+ l(Xt) > cN H Qk(Xt) 
t=l t=l 

N 

(2.17) > 2 H Qk(Xt) 
t=1 

It follows that H Qk(xt) diverges as k tends to infinity, but this statement con- 
tradicts the normalization condition (1.8). Theorem 2 is proved. 

THEOREM 3. If N > n + m + 1, if a best approximation exists, and if the 
best approximation is "normal," then the rate of convergence of the ODC algorithm 
is at least quadratic. 

Proof. We let the best approximation be the function 

m n 
(2.18) R*(x) = P*(x)/Q*(x) = E pi*x' E qZ j , 

i=O j=O 

and, following condition (1.8), we let its normalization be 

(2.19) max lqfl = 1. 

The minimax error, A*, is defined by (1.5). The statement that the best approxima- 
tion is normal means that the polynomials P*(x) and Q*(x) have no roots in 
common, and that the coefficients p* and q* are not both zero. In this case, because 
N > m + n + 1, Cheney's [1, p. 165] strong unicity theorem" holds.2 It states 
that there exists a positive constant y such that the inequality 

(2.20) lf - RII,, > jlf - R*11,, ? yIIR - R*11.0 

is satisfied, where R is any rational function of the form (1.1) satisfying the condi- 
tion (1.2), and where the norm is defined by (1.3). To use expression (2.20) we 
require the following lemma. 

2 Although Cheney [1] states this theorem for approximation on an interval, it is only necessary 
that the domain X be compact. 
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LEMMA. There exists a constant 0 such that the inequality 

(2.21) IIQ - Q*1.0 < 0j1R - R*11I, 

holds, for all rationalfunctions of the form (1.1) that satisfy condition (1.2), and 
that are normalized to give the equation 

(2.22) max lqjl = 1. 
J 

Proof of lemma. Let 8 be the quantity 

(2.23) 8 = IIR-R*11K . 

The definition of M (see (2.5)) and (2.23) imply the inequality 

(2.24) max IP(xt)Q*(xt) - Q(xt)P*(xt)l < M28. 

For the remainder of the proof we assume that p* # 0. However if p* = 0, then 
q;* ;? 0, and an argument that is analogous to the one that follows can be used. 

We let a be the ratio Pm/P*, we define the polynomials 
m-1 

P(x) = P(x) - OP*(x) = E pix1, 

(2.25) i=O 
n 

Q(x) = Q(x) - cXQ*(x) = E qjxj, 
j=0 

and we obtain from condition (2.24) the inequality 
m-1 n 

(2.26) max PixtQ*(xt)- Ej ? M2q. 
t i=O j=0 

Next we show that the functions xiQ*(x), i = 0, 1, ... , m - 1, and xiP*(x), 
j = 0, 1, * , n, are linearly independent on X. If they were dependent, then there 
would exist nonzero polynomials A(x) and B(x), of degrees at most m - 1 and n 
respectively, such that the equation 

(2.27) A(xt)Q*(xt) - B(xt)P*(xt) = 0, t = 1, 2, ... , N, 

holds. Since N > m + n + 1, the polynomial {A(x)Q*(x) - B(x)P*(x)} would be 
identically zero, and therefore A(x)Q*(x) would be zero at the m zeros of P*(x). 
Now the degree of A(x) is at most m - 1, and therefore P*(x) and Q*(x) would 
have at least one zero in common, which is contrary to the conditions of 
Theorem 3. It follows that the functions of expression (2.26) are independent 
on X, so we deduce that there exists a constant, d say, such that the bounds 

(2.28) 
~Pi < db, i = O, 1 , , m- , 

qj< db, j = 0, 1, n, 
are obtained for all P(x)/Q(x). 

Next we show that the value of a is close to one when 8 is small. Equation 
(2.25) gives the identity 
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THE DIFFERENTIAL CORRECTION ALGORITHM 499 

and therefore, if we letj have the value for which lqjl = 1, we find lqj + aq*l = 
and from expressions (2.19) and (2.28) it follows that lcl ? 1 - db. Further if in 
(2.29) we let j have the value for which lqj*I = 1, then from expressions (2.22) and 
(2.28) we deduce that lal 1 -db. Thus we obtain the inequality 

(2.30) -db<1-cal < db 

which implies that when 8 is small, then either a is close to + 1 or it is close to - 1. 
We expect a to be positive when 6 is small, because condition (1.2) has to hold. 
Specifically we deduce from expressions (1.2) and (2.25) the bound 

(2.31) 0 < Q(x1) = Q(X1) + aQ*(x1), 

and statements (2.5) and (2.28) give the inequality 

(2.32) IIQIKl o ' Mdb& 

so it follows that ac > -Md6/Q*(xj). This inequality and expression (2.30) imply 
that the bounds 

(2.33) -db ? 1- I ? db[3 + 2M/Q*(xl)] = db, 

say, hold for all 8 > 0. 
To complete the proof of the lemma, we note that expressions (2.25), (2.32) 

and (2.33) imply the inequality 

(2.34) IIQ - Q*IIo _< IIQlIKo + 11(a - 1)Q*iIx, 
< Mdb + dbllQ*lIx, 

and therefore the truth of the lemma follows from the definition (2.23). 
In (2.20) we let R(x) = Rk(x), and we obtain the condition 

(2.35) 1IRk - R*1ll o (Ak - A*)/y. 

Therefore (2.21) implies the bound 

(2.36) IIQk - Q*11o ? O(Ak - )/y, 

so, letting q* be the number 

(2.37) * = min Q*(xt), 

we deduce the inequalities 

Q*(xt) __________ 
(2.38) min >___ 

(2.X Q(xt) - * + (Ak - A*)O/y 

and 

min S Qk(Xt) l> * - (Ak - A*)O/y 
t lQk + 1 (Xt) J * + (Ak+1 - A*)0/y 

(2.39) 11~~~~~* - (Ak A*)O/y (2. 39) > ? (Ak - A*)O/y n*+(k-^) 
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We now substitute (2.38) in the middle line of (2.7), and obtain from (2.6) 
the bound 

(2.40) f f(X) -P+ ,(x, _ /\k} Qk(X) - 
__1* 

+(Ak - 
A_*)__ _ Q X Q?dt k} Xd <-q*+(Ak - A*)O/ 

which holds for t = 1, 2, **. , N. By multiplying both sides of this expression by 
Qk(xt)/Qk? (x,), and by using statements (1.4) and (2.39), we deduce the bound 

(2.41) Ak - A < ?1 (Ak ) 
{ (A - k )0 

from which it follows that the inequality 

(Ak?1- A*)? (A, - A) *1q* - (A, - A*)O/y}] 
(^k+ 1 - ^) (k )[ {W* + (Ak - A*)0/} j 

(2.42) _ (A, A*) 2{3* + (A, - A*)O/y}O/y 

*{i* + (Ak - A*)0/TJ2 

is satisfied. Now 0, y and q* are all positive constants, and therefore this expression 
shows that the rate of convergence of the sequence Ak, k = 1, 2, * , to A* is at 
least quadratic. Theorem 3 is proved. 

Note that from the quadratic convergence of the sequence Ak, k = 1, 2, , 
and from inequalities (2.20) and (2.21), it may be proved that, if the conditions of 
Theorem 3 hold, then the coefficients of the polynomials Pk(x) and Qk(x) converge 
quadratically to the coefficients of the polynomials P*(x) and Q*(x), in the sense 
that the differences in the coefficients are bounded by quadratically convergent 
sequences. 

3. Numerical results. The implementation of the ODC algorithm is straight- 
forward. We have to calculate the coefficients of P(x) and Q(x) that minimize 
expression (1.7), and therefore we require the least value of w subject to the 
constraints 

(3.1) [f(xt) + Ak]Q(xt) - P(xI) + Qk(xt)w _ 0, t = 1,2, ... , N, 

[-f (xt) + AdQ(xt) + P(xI) + Qk(xt)w >? 0, t = 1,2, ... , N, 

and 

(3.2) max lqjl = 1, 
J 

where the coefficients of P(x) and Q(x) are variables. Since the constraints (3.1) 
and (3.2) are linear in w, pi, i = 0, 1, . , m, and qj, j = 0, 1, ... , n, linear pro- 
gramming methods are applicable. 

In practice it is more convenient to replace (3.2) by the inequality 

(3.3) -1 <qj< 1, j=0,1, I ,n. 

Expressions (3.2) and (3.3) are equivalent in the present calculation, because the 
inequalities (3.1) are homogeneous in the variables. Moreover it is more convenient 
in practice to solve the dual of this linear programming problem. 
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To compare the ODC and the DC versions of the differential correction 
algorithm, six sets of data are used, each set being a table of values of a function 
f(x). These functions and data points are specified in Table 1. The data is fitted 
by the rational polynomials P1(x)/Q1(x), P2(x)/Q2(x), P1(x)/Q3(x) and P4(X)/Q2(X), 
where now the subscripts denote the degrees of the polynomials. Thus twenty-four 
different approximations are calculated. 

TABLE 1 
The six data sets for the numerical examples 

Function Abscissas Number of points 
f(x) {xl, x2, I XN) N 

A. eX -1.0(0.1)1.0 21 
B. sinx -3.0(0.3)3.0 21 
C. x 0.0(0.05)1.0 21 

f 1 0.0(0.05)0.45 
D. g 0 0.5 21 

(- 1 0.55(0.05)1.0) 

E. x 0.0(0.1)1.01 21 
10.5x + 0.4 1.1(0.1)2.0J 

0.0(1/7)6/7 
F. cos (4x) 1.0(0.2)1.8 21 

(2.0(1/8)3.0) 

To begin the iterations the starting values po = = 1 and pi = q 0, 
i=1, 2, m, j = 1, 2, , n, are used. However, to calculate P2(X)/Q2(X) two 
other sets of starting coefficients are also used. In one set qo = 1 and the remaining 
coefficients are zero, and in the other set qo = 1 and the remaining coefficients 
are obtained by a random number generator. The different starting approxima- 
tions do not influence the final approximation, but they do affect the number of 
iterations that are required by the ODC and DC algorithms. (Consequently, 
in practice we would normally supply either algorithm with starting values based 
on good initial rational approximations.) 

The number of iterations is reported in Tables 2 and 3. For both algorithms 
the test used to terminate the iterative process is the inequality 

(3.4) Ak - Ak+ 1 < 10-4Ak. 

These tables also give the coefficients of the best approximations and the minimax 
errors A* calculated by the ODC algorithm. All the computations were performed 
in double precision arithmetic on an IBM 360/44. 

The numerical examples do confirm that the final convergence rate of the 
ODC algorithm is very rapid, and in fact we tried changing the constant in 
inequality (3.4) to 10-6, and there was no increase in the number of iterations 
required by the ODC algorithm. However, this fast rate of convergence is not 
shared by the DC algorithm, and we note that Tables 2 and 3 show that in nearly 
every case the DC algorithm requires substantially more iterations than the 
ODC algorithm. 
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We have checked the equioscillation property that characterizes the error of 
the minimax approximation (Cheney [1], for instance), and we find that for the 
results obtained by the ODC method, equioscillation is present to ten or more 
significant figures. However on the average we find about six figures of accuracy 
in the errors calculated by the DC algorithm, due to the fact that the rate of 
convergence of the DC algorithm is only linear. 

Finally we note that both versions of the differential correction algorithm 
can be used to calculate rational approximating functions that are more general 
than the ratio of two algebraic polynomials. It is only necessary that the adjustable 
parameters appear linearly in the numerator and denominator of the approx- 
imating function, and therefore we can approximate functions of several variables. 

For example, Fox, Goldstein and Lastman [5] calculate the coefficients 
pi, i = 0,1, , 5, and qj, j = 0,1, , 5, that minimize the error of the 
approximation 

(3.5) Re 
0 e{ dz} Po + PlY + P2X + P3xy + Y4V2 + p5X2 
+iy Z qo + qly + q2x + q3Xy + q4y2 + q5x2 

on a set of twenty-five discrete data points. We applied the ODC algorithm to 
this problem, using the starting approximation and convergence criterion specified 
above, and we found convergence in ten iterations. For our calculated best 
approximation the equioscillation property holds to eleven significant figures. 

The theory and numerical examples given in this paper show that the 
differential correction algorithm, in its original form, is an excellent method for 
computing discrete minimax rational approximations. 
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