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The harmonic mean of n positive numbers is defined by the
following function:

f (x) =
n

∑
n

k=1
1
xk

, x ∈ R
n

++.

This function can be сontinuously extended to R
n
+ (if at least one

xk is zero, then f (x) = 0). Furthermore, f is postive homogeneous
on this set: f (λx) = λf (x) for all λ > 0.
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Рис. 1: The graph of the harmonic mean when n = 2
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Consider the problem of unifrom approximation of function f by
homogeneous function g(c , x) = 〈c , x〉 on a solid simplex
Ω = {x ∈ R

n
+ |

∑
n

i=1 xi 6 1}:

ϕ(c) = max
x∈Ω

|f (x) − g(c , x)| → inf
c∈Rn

.
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Рис. 2: Inequality between harmonic mean

and arithmetic mean
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Рис. 3: Solution when n = 2
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We show that vector c∗ = ( 1
2n
, . . . , 1

2n
) is the unique solution of our

approximation problem.
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Lemma 1
The following representation holds:

ϕ(c) = max
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|f (x)− g(c , x)|,

where Λ = {x ∈ R
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∑
n

i=1 xi = 1} is standard simplex.
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The following representation holds:

ϕ(c) = max
x∈Λ

|f (x)− g(c , x)|,

where Λ = {x ∈ R
n
+ |

∑
n

i=1 xi = 1} is standard simplex.

Lemma 2
The following equality holds:

ϕ(c∗) =
1

2n
.

Theorem 1
Vector c∗ is the unique solution of considered approximation

problem.

10 / 11



Theorem 2 (strong uniqueness)

For any c ∈ R
n the following inequality holds:

ϕ(cα)− ϕ(c∗) > r ||c − c∗||,

where r = 1√
4n2−3n

.

Theorem 3
Constant r is unimprovable i.e. there exists cα such that

lim
α→+0

ϕ(cα)− ϕ(c∗)

||cα − c∗||
= r .

11 / 11


