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Abstract

Our problem of interest consists of minimizing a separable, convex and differentiable function over a convex set, defined
by bounds on the variables and an explicit constraint described by a separable convex function. Applications are abundant,
and vary from equilibrium problems in the engineering and economic sciences, through resource allocation and balancing
problems in manufacturing, statistics, military operations research and production and financial economics, to subprob-
lems in algorithms for a variety of more complex optimization models. This paper surveys the history and applications of
the problem, as well as algorithmic approaches to its solution. The most common techniques are based on finding the opti-
mal value of the Lagrange multiplier for the explicit constraint, most often through the use of a type of line search pro-
cedure. We analyze the most relevant references, especially regarding their originality and numerical findings, summarizing
with remarks on possible extensions and future research.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

1.1. The problem at hand

Suppose that for j ¼ 1; . . . ; n the functions /j : R! R and gj : R! R are convex and differentiable and
that �1 6 lj < uj 6 þ1 holds. Let b 2 R. Our problem has the following general statement:
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minimize
x

/ðxÞ :¼
Xn

j¼1

/jðxjÞ ð1aÞ

subject to gðxÞ :¼
Xn

j¼1

gjðxjÞ 6 b; ð1bÞ

xj 2 X j :¼ ½lj; uj�; j ¼ 1; . . . ; n: ð1cÞ
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Let X � Rn denote the (convex) feasible set of the problem (1). The problem has a finite optimal solution if,
for example, X is bounded or if each function /j is such that /jðxjÞ ! þ1 whenever xj ! �1; it is moreover
unique if the functions /j are strictly convex.

Applications where this mathematical model can be found are wide-spread. Before providing a short list for
a quick flavour, we must make an important comment, however: We consider as (almost) equivalent the prob-
lem where the ‘‘6’’-constraint (1b) has been replaced by a ‘‘=’’-constraint; the motivation is that in practice we
expect the only explicit constraint to be active at an optimal solution. (If we solve the problem (1) while dis-

regarding the constraint (1b), we either find an optimal solution to the original problem (if feasible) or we learn
that every optimal solution must fulfil (1b) with equality.) By the same token, we will sometimes assume that
the optimal value of the Lagrange multiplier l for the explicit constraint (1b) is positive.
1.2. Example applications

1.2.1. Euclidean projection

Let /jðxjÞ :¼ 1
2
ðxj � yjÞ

2, j ¼ 1; . . . ; n, where y 2 Rn is a given vector. The resulting instance of the problem
(1) is that of finding the vector of X nearest to y, that is, the problem of finding the projection of the vector y
onto X. This problem arises in plenty of applications, especially as a subproblem. Various projection problems
arise in decomposition methods for stochastic programming problems [RoW88,MuV91,NiZ93]. The case of
an explicit linear equality is frequently occurring in applications. A particular feasible set is the simplex,
fx 2 Rn

þ j ð1
nÞTx ¼ bg, b > 0. (With b = 1, it is known as the unit, or canonical, simplex.) Solving a projection

problem over such a set described by a linear equality constraint and bounded variables has been considered,
for example, in matrix updates in quasi-Newton methods [CaM87], in gradient projection methods for a class
of mathematical programs with equilibrium constraints (MPECs) arising in material and shape optimization
problems in structural mechanics [FJR05], in subgradient algorithms within right-hand side allocation meth-
ods for linear multicommodity network flow problems [HWC74,KeS77,AHKL80,HKL80,LPS96], in equili-
bration procedures for traffic flows [DaS69,BeG82,DaN89,LaP92,Lot06], primal feasibility procedures
within Lagrangian dual algorithms for classes of integer programs [KLN00] and in Lagrangian dual methods
for quadratic transportation problems, also known as constrained matrix problems [BaK78,BaK80,
OhK80,OhK81,OhK84,CDZ86,Ven89,ShM90,Ven91,NiZ92]; see further below.

The problem of projecting a vector onto a halfspace (that is, the case fx 2 RnjaTx 6 bg for some vector
a 2 Rn), and the more general case of projecting a vector onto a level set fx 2 RnjgðxÞ 6 bg of some convex func-
tion g : R! R, also arises in classic procedures for the feasibility problem. The most famous one is the successive
projection method for polyhedral sets known as the Agmon–Motzkin–Schoenberg algorithm [Agm54,MoS54].
Further examples can be found in the excellent surveys in [BeT89,BaB96,CeZ97]. Such methods can also in some
cases be interpreted as subgradient methods for the minimization of a non-differentiable convex function over a
closed convex set (e.g., [Gof78]), several methods for which also use projections onto level sets of convex func-
tions or surrogate linearized subgradient inequalities (as in ‘‘poor man’s bundle methods’’); see, for example, the
level methods in [LNN95,Kiw96a,Kiw96b], references found therein, and [Bra93, pp. 61–78].
1.2.2. Portfolio selection

Let b ¼ 1, h P 0, and for all j let /jðxjÞ :¼ qj

2
x2

j � hrjxj, qj > 0; gjðxjÞ :¼ xj; and lj :¼ 0. The resulting prob-
lem with the ‘‘6’’-constraint replaced by a ‘‘=’’-constraint is to
minimize
x

Xn

j¼1

qj

2
x2

j � hrjxj ð2aÞ

subject to
Xn

j¼1

xj ¼ 1; ð2bÞ

xj 2 ½0; uj�; j ¼ 1; . . . ; n; ð2cÞ
where x 2 Rn is a vector of asset holdings (in portions of the total budget which are further upper bounded by
uj for each asset), the matrix of diagonal elements qj represents a diagonal approximation of the positive
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definite matrix Q 2 Rn�n of covariances, while r 2 Rn is the vector of expected asset returns. This then is a sep-
arable approximation of the classic Markowitz [Mar52,Mar59] portfolio optimization model; references to the
model (2c) include [Sha63,Sto73,Jud75,EGP76,Pan80,DFL86].

1.2.3. Resource allocation models in production economics

Let b > 0. For all j let cj > 0, bj 2 R, /jðxjÞ :¼ cj=xj þ bjxj, and gjðxjÞ :¼ ajxj, aj > 0, and hence consider
the problem to
minimize
x

Xn

j¼1

cj=xj þ bjxj ð3aÞ

subject to
Xn

j¼1

ajxj 6 b; ð3bÞ

xj 2 ½lj; uj�; j ¼ 1; . . . ; n: ð3cÞ
We mention two typical instances of this model. In the lot sizing problem we let, for each j, xj denote the order
quantity of item j, cj be its holding cost, bj the ordering (or, replenishment) cost, aj the storage requirement per
item, and b the storage capacity. With this interpretation the problem is a lot sizing problem with a capacity
constraint for a multi-item system; cf. [CAA57,Zie82,VeK88]. (Without the capacity constraint, a classic solu-
tion, often called Wilson’s formula, or the economic order quantity (EOQ) formula, was given already by Har-
ris [Har13,Har15]; see also [Wil34,WaW58,HaW63].) Letting aj ¼ 1 and bj ¼ 0 for all j and replacing ‘‘6’’ with
‘‘=’’ in the constraint (3b) we obtain the subproblem of a hierarchical production planning problem considered
by Bitran and Hax [BiH77]. In this case, the problem is that of finding an optimal EOQ at the lower level of a
hierarchical problem that defines the right-hand side b of the items in a given class, and the bounds defining Xj

are obtained from forecasts of future demand, the current inventory, the safety stock, and the overstock limit.
In [BiH79,BiH81] they consider objective functions of the form (3a) where labour costs are included also.

Additional references on resource allocation problems are found in [Zip80b,IbK88,PaK90,MaK93,
BSSW94,KaI98].

1.2.4. Video-on-demand batching

Batching of video requests in a video-on-demand environment may be used to improve average throughput.

Assume that the frequency of requests for the jth video is known to be fj and its length is Lj ðj ¼ 1; 2; . . . ; nÞ,
then L :¼

Pn
j¼1Ljfj

� �
=
Pn

j¼1fj is the average video length. If the server capacity (in terms of the number of

streams) is S then the average number of streams scheduled at full capacity is S/L. Suppose we let xj denote
the average time interval at which video j is batched. If we wish to minimize the average latency times of
requests, subject to the capacity of the system, we can state the approximate problem to
minimize
x

Xn

j¼1

fjxj ð4aÞ

subject to
Xn

j¼1

1=xj ¼ S=L; ð4bÞ

xj P 0; j ¼ 1; . . . ; n: ð4cÞ
Its optimal solution reflects the best policy: that the queue length for video j at the time of batching should be
proportional to

ffiffiffiffi
fj

p
.

This problem was introduced in [AWY96]; see also [KaI98].

1.2.5. Optimum allocation in stratified sampling

The concept of optimum allocation in stratified sampling was introduced in [Ney34]. In this fundamental
problem in statistics we are interested in estimating the average of a certain quantity among large populations.
Since it is infeasible to examine the entire population M, we have to make an estimation on the basis of a small
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number of samples. For this purpose the population is stratified into n strata, each of which having a popu-
lation Mj, and from which xj samples are chosen.

The problem of minimizing the variance of the estimate is that to
minimize
x

Xn

j¼1

x2
j

ðMj � xjÞr2
j

ðMj � 1Þxj
ð5aÞ

subject to
Xn

j¼1

xj ¼ b; ð5bÞ

xj P 1; j ¼ 1; . . . ; n; ð5cÞ
where xj ¼ Mj=M , r2
j is an appropriate estimate of the variance in each strata, and we choose a total sample

size specified to a positive integer b and such that at least one sample is taken from each strata.
In this problem, the total sample is to be allocated to the strata so as to secure a minimum variance of the

global estimate. Alternatively, we may determine the smallest sample necessary to control the variance of the
global estimate at a specified level.

This problem is taken up and extended in [Sri63,San71,BRS99].
An application of sampling resource allocation problems to the real-time monitoring of digital signals is

given by Eu [Eu90,Eu91].
As further examples of instances of the problem (1) with a nonlinear separable objective and constraints

defining a simplex we finally mention the optimal scheduling of mass screening tests [LeP88] and the optimal
allocation of software-testing resources [OhY90].

1.3. Motivation and outline

As will be evidenced by the example algorithms to be presented, an optimal solution to the problem (1) can
in many cases most simply be generated by finding the optimal value of a single variable, namely the Lagrange
multiplier associated with the constraint (1b). Two facts have attributed to the existence of many such algo-
rithmic developments and analyses: the problem is, as seen above and in the next section, quite diverse in its
applications, and the algorithms are often quite simple and elegant. In the preface to their book on resource
allocation Ibaraki and Katoh [IbK88, p. xiii] claim that the first paper on the subject appeared in 1953
[Koo53], and then also state:
It is also observed that similar algorithms have been recurrently proposed in the literature, perhaps
because of their simplicity of structure and the diversity of their applications. In view of this, it appears
timely to summarize the past thirty years of achievement. This motivated us to write this book.
Since the publication of the above-mentioned book the development of algorithms for the continuous allo-
cation problem have not stalled but instead increased in intensity, and it is still true that algorithms are recur-
rently proposed. It is therefore again timely to summarize this development, especially that since the mid
1980s. Further, while it might in general be said that annotated bibliographies are going out of fashion because
of the development of electronically available and searchable citation indexes, many relevant publications
both prior to and after the publication of the book [IbK88] cannot be found in such indexes at all and several
others at least not in mathematical ones. Related of course to all of the above, the reference lists of the recent
papers do not correctly reflect the methodological and applicational development of the past decades.

In the next section we trace some of the history of the problem’s appearance and its many applications.
Upon the characterizations and properties of the primal problem (1), its Karush–Kuhn–Tucker conditions
and its Lagrangian dual formulation, in Section 3 we build the two most important algorithmic constructs
and discuss their merits. We then collect the references in the area in annotated bibliographies, one for each
of the two main algorithm frameworks, and in the process not only adding to the most important ones from
the monograph [IbK88] with the last 20 years of research output but also tracing earlier developments not
found therein. We summarize the lists of articles by giving remarks on their originality, numerical findings
and visible patterns of research, followed by remarks on possible future developments.



M. Patriksson / European Journal of Operational Research 185 (2008) 1–46 5
2. History and additional applications

2.1. The theory of search and equilibria in special games

Our first examples have a diverse set of independent roots, but all of them are associated with various equi-
librium concepts.

2.1.1. Gibbs’ Lemma and equilibrium in thermodynamics

The first example problem is the earliest one that is general enough and sufficiently well studied to be a can-
didate for providing an original reference to our problem (1).

Consider the following instance of (1):
1 At
hetero

2 Th
minimize
x

Xn

j¼1

/jðxjÞ ð6aÞ

subject to
Xn

j¼1

xj ¼ b; ð6bÞ

xj P 0; j ¼ 1; . . . ; n: ð6cÞ
Lemma 1 (Gibbs’ Lemma). Suppose that x* solves the problem (6c). Then, there exists (at least one) l� 2 R

such that
/0jðx�j Þ
¼ �l�; if x�j > 0;

P �l�; if x�j ¼ 0;

(
j ¼ 1; . . . ; n; ð7Þ
holds.

Proof. Thanks to the linearity of the constraints, the problem satisfies the Abadie constraint qualification and
the Karush–Kuhn–Tucker conditions are necessary for the local optimality of x*. Introducing the multiplier l
for the equality constraint and kj P 0 for the sign condition on xj, we obtain the Lagrange function
Lðx; l; kÞ :¼ blþ

Pn
j¼1ð/jðxjÞ þ ½l� kj�xjÞ. Suppose then that the triple ðx�; l�; k�Þ 2 Rn � R� Rn

þ is a Kar-
ush–Kuhn–Tucker point. Setting the partial derivatives of L with respect to each xj to zero yields
/0jðx�j Þ ¼ k�j � l�; j ¼ 1; . . . ; n: ð8Þ
Further, the complementarity conditions state that
k�j � x�j ¼ 0; j ¼ 1; . . . ; n:
For a j with x�j > 0 we must therefore have from (8) that /0jðx�j Þ ¼ �l�. Suppose instead that x�j ¼ 0. Then,
since k�j P 0 must hold, we obtain from (8) that /0jðx�j Þ ¼ k�j � l� P �l�, and we are done. h

The name ‘‘Gibbs’ Lemma’’ was coined by John M. Danskin [Dan67, p. 10]; Gibbs’ Lemma is named after
the 19th century scientist J. Willard Gibbs, one of the great scholars of the century, and provider of outstand-
ing work in thermodynamics including pioneering work on statistical mechanics. In his long paper ‘‘On the
equilibrium of heterogeneous substances’’ [Gib1876,Gib1878a,Gib1878b]1 Gibbs formulated a principle for
the equilibrium state of chemical substances, such as gas, in actual physical contact with each other. Gibbs’
Lemma stems from an equilibrium in a kind of game, wherein the system simultaneously strives for a maxi-
mum entropy and a minimum energy. His principle is formulated in words thus:2
home, at dinner, Gibbs would often offer to prepare the salad by saying that he was the world’s recognized expert on the mixture of
geneous substances [Meh98].
is passage is found on page 56 in the 1961 Dover reprinted version of [Gib1876].
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I. For the equilibriumof any isolated system it is necessary and sufficient that in all possible variations of the
state of the systemwhichdonot alter its energy, the variationof its entropy shall either vanish or be negative.

II. For the equilibrium of any isolated system it is necessary and sufficient that in all possible variations of the
state of the systemwhich do not alter its entropy, the variation of its energy shall either vanish or be positive.
Gibbs’ two principles correspond precisely to the two optimality conditions for the Lagrangian of a max-
imum entropy and minimum energy formulation of the above-mentioned game. Notice however that Gibbs
never formulated the two optimization problems formally. The fact that the substances are allowed to be het-
erogeneous was most important and truly original.

2.1.2. Marginal utility theory

Marginal utility theory in production economics dictates that the only items produced are the ones that
have the largest marginal profits; the marginal profits are also equal, and maximal, among all items. Gibbs’
Lemma, rewritten for a maximization version of the problem, provides exactly this conclusion, and the mar-
ginal profit moreover equals the (negative of the) value l* of the Lagrange multiplier.

This result in utility theory is however older than Gibbs’ Lemma, and is nowadays attributed to the Prus-
sian economist and civil servant Hermann Heinrich Gossen. His work on marginal utility is found in the book
[Gos1854] published in German, and much later translated into English in [Gos83] with the title The Laws of

Human Relations and the Rules of Human Action Derived Therefrom. The preface reveals that the author wrote
in a quite pretentious tone, comparing his work with that of Copernicus in significance; according to the Eng-
lish translation’s introductory essay, written by N. Georgescu-Roegen, neither did his usage of German and
mathematics (especially in light of the non-mathematical approaches adopted by contemporary German econ-
omists) help him gain an audience. In fact, it was only in the 1870s that his work was rediscovered and appre-
ciated, following discussions among the economists Leon Walras, Carl Menger, and William Stanley Jevons,
and then became reformulated in a more intelligible way for the public.

To appreciate the originality of the work of H.H. Gossen and show that Gibbs’ Lemma effectively was ana-
lyzed already by him, we cite his two main results (of which the first is of our primary interest); they are,
respectively, found in [Gos83, Theorem 1.2, p. 14] (result (a)) and [Gos83, Theorem 7.11, p. 108–109] (result
(b)), and [Gos83, Theorem 2.3, p. 53].3

Theorem 2 (Gossen’s Fundamental Theorems). (The optimal allocation of money): (a) In order to maximize his

total pleasure, an individual free to choose between several pleasures but whose time is not sufficient to enjoy all to

satiety must proceed as follows: However different absolute magnitudes of the various pleasures might be, before

enjoying the greatest pleasure to satiety first all pleasures in part in such a manner that the magnitude [intensity]

of each single pleasure at the moment when its enjoyment is broken off shall be the same for all pleasures.

(b) Man obtains the maximum of life pleasure if he allocates all his earned money E between the various

pleasures and determines the e in such a manner that the last atom of money spent for each pleasure offers the

same amount [intensity] of pleasure.

(The optimal allocation of time): In order to maximize his life pleasure, man must distribute his time and
energy among various pleasures in such a way that for every pleasure, the intensity of pleasure of the last atom
produced shall be equal to the magnitude [intensity] of the discomfort experienced by him at the very last
moment of his expenditure of effort.

Interestingly, his proofs of several of the results in his book [Gos1854] were based on ingenious diagrams,
which he was the first to devise; the result in (a) is nowadays normally illustrated with the use of the indiffer-
ence map but, as pointed out by N. Georgescu-Roegen in [Gos83, p. xci], Gossen’s diagram is better in reveal-
ing the relationship between allocation and utility.

2.1.3. Traffic equilibrium

The notion of an equilibrium in a traffic system of individual trip makers seeking a best route from origin to
destination was first described and analyzed in mathematical terms by the statistician J.G. Wardrop of the
e ‘‘[intensity]’’ brackets constitute the translator’s clarification that we are dealing with derivative values.
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British Road Research Laboratory. Since his seminal paper [War52], the equilibrium conditions are also
known as Wardrop’s first principle. As cited from [War52], this is the definition:
4 Tra
The journey times on all the routes actually used are equal, and less than those which would be experienced

by a single vehicle on any unused route.
Wardrop’s first principle is usually referred to as the user equilibrium conditions, since they can be related to
the individual traveller’s (user’s) cost minimizing behaviour, and to the steady-state which the principle describes
and which evolves following trial-and-error route-choice adjustments. Wardrop’s second principle deals with a
situation in which the travellers are somehow influenced to choose their routes such that the average travel cost is
minimal, that is, the total travel cost is minimal. We refer to such a situation as being a system optimum.

In the mid-1950s, following the publication of the famous Kuhn–Tucker Theorem [KuT51] in nonlinear
programming, the user equilibrium principle was shown to be the statement of the optimality conditions of
a special convex program. This program has variables corresponding to the non-negative volumes xj in the
links j of the traffic network as well as disaggregated variables for the flows between different origins and des-
tinations; the objective function is the sum of integrals (with limits zero and xj) of functions for each link, each
of which measuring how the cost of travel along a link increases by its volume. The primary classic references
for the construction of these convex programs, and the interpretation of their optimality conditions, are Beck-
mann et al. [BMW55,BMW56]; for more recent expositions, see [She85,Pat94].

In the simplest traffic models, where there is only one origin and one destination, and the links are all par-
allel (that is, the routes never intersect), the model (6c) perfectly represents the above-mentioned convex pro-
gram. Indeed, let n be the number of links in the network, each function /j be the primitive function
corresponding to the travel cost function, and the value of b be the demand of travel between the origin
and the destination. Gibbs’ Lemma then corresponds exactly to Wardrop’s first principle, with the value of
l being the cost of travel along each route actually used.

Normally traffic models are much more complex, dealing with several pairs of origin and destination and
having non-separable travel cost functions due to the interaction between traffic along neighbouring links in
the network, particularly at intersections. (For more details on traffic models, see [She85,Pat94].) However, the
simple model discussed above is interesting in that the connection between a user equilibrium in a traffic net-
work and Gibbs’ Lemma was discussed by economists long before the work of Wardrop and Beckmann et al.
We summarize this discussion next.

The notion of pricing economic activities in order to obtain a system optimum was introduced into the eco-
nomics literature by Jules Dupuit [Dup1844,Dup1849]. The argument is that a congested traffic network will
perform inefficiently, if users do not pay for their external costs. The concept of marginal cost pricing is there-
fore sometimes referred to as the process of internalizing the external costs of the users of the traffic network.4

This market-based, laissez-faire, pricing policy, in which selfish pursuit of individual objectives result in max-
imum social benefit, is also the guiding light behind Adam Smith’s Invisible Hand: having removed market
imperfections (here, through the pricing of congestion), private pursuit becomes optimal; see Book IV, Chap-
ter II, of The Wealth of Nations [Smi1776].

The total travel cost is generally not minimized by the user optimal travel pattern, as already observed by the
economist Pigou [Pig20]. Pigou provides the following discussion on the difference between the two principles:
Suppose there are two roads ABD and ACD both leading from A to D. If left to itself, traffic would be so

distributed that the trouble involved in driving a ‘‘representative’’ cart along each of the two roads would be

equal. But, in some circumstances, it would be possible, by shifting a few carts from route B to route C,

greatly to lessen the trouble of driving those still left on B, while only slightly increasing the trouble of driv-

ing along C. In these circumstances a rightly chosen measure of differential taxation against road B would

create an ‘‘artificial’’ situation superior to the ‘‘natural’’ one. But the measure must be rightly chosen.
Notice that Pigou indeed describes a version of Gibbs’ Lemma.
The purpose of Pigou’s statement is to give an example of the consequences of total freedom of companies’

factory investments. Pigou concludes that they would choose to invest in factories with higher marginal invest-
ces of such ideas can be found also in von Thünen’s [vTh1826] analysis of agricultural land use.
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ment costs, and that society, by a correctly chosen taxation, can direct the companies to invest more wisely,
from the society’s point of view. In this, he has in fact both stated the two route-choice principles and also
introduced the principle of congestion pricing.5

The economist Knight [Kni24] examined Pigou’s example, and explained in more detail the reason for the
difference between the two situations. Discussions on pricing issues later became more precise, especially after
the optimization models of the two Wardrop conditions appeared in the work by Beckmann et al.; see, for
example, [Wal54,Wal61]. Congestion pricing, the related Braess’ Paradox, and the ‘‘cost of anarchy’’—the dif-
ference in total travel cost between the user equilibrium and system optimal flows—is today a hot topic in
transportation science (see, e.g., [Rou02,RoT02,CSS04]).
2.1.4. The theory of search

Consider the problem to
5 Ho
book [
econom
maximize
x2X

Xn

j¼1

ajð1� e�bjxjÞ; ð9Þ
where X :¼ fx 2 Rn
þ j 1

Tx ¼ bg, b > 0, aj; bj > 0, j ¼ 1; . . . ; n, which is of the form (6c) with a special objective
function. This problem was formulated and studied in the context of the US Navy search for enemy vessels in
the Atlantic ocean, by Bernard O. Koopman; see [Koo52,Koo53,Koo54,Koo56a,Koo56b,Koo56c,Koo57,
Koo79a,Koo79b], and the books [Koo80,Koo99] which contain some of the earliest work done immediately
after WWII (e.g., [Koo46]).

The problem has the following interpretation: an object is with probability aj inside box j, and �bj is pro-
portional to the difficulty of searching inside the box. If the searcher spends xj time units looking inside box j

then he/she will find the object with probability 1� expð�bjxjÞ. The problem (9) represents the optimum
search strategy if the available time is limited to b time units.

Koopman called his research problem the theory of search, which he invented through his work. In his
paper [Koo53] he gave four examples of problems of the form (6):

• Search for a lost object: The above example.
• Distribution of destructive effort: This example is discussed below.
• Response to a sales campaign: in a maximization version of (6) the value of b is the total value spent on the

campaign, while /jðxjÞ denotes the return on an investment xj in a given sector j.
• Drilling for oil: Among n possible drilling sites we wish to select only those that provide the best return,

measured in terms of the functions /j; this function is zero at zero, but also at all arguments xj (representing
the investment into the operation) that are too small for the operation to yield a sizable drilling.

The book [ORC59] summarizes some then recent developments in operations research made in particular
by staff at MIT associated with NATO research activities. (Among the authors we find P.M. Morse and G.E.
Kimball.) Koopman (the only non-MIT author, affiliated with Columbia University) wrote two chapters. In
his concluding remarks to his chapter ‘‘Search’’ in this collection [Koo59] he states the following, showing that
he did indeed know of Gibbs’ work and understood the generality of the problem:
The class of problems considered herin is more general than the problems of linear programming, since the

expression to be optimized is non-linear and involves integration; it is more special, since only two linear

side-conditions are given. If the number of such conditions were increased, much of what has been done here

could be extended, although not without going drastically beyond the present chapter. The same is true, with

even greater difficulties, if the detection law (or pay-off function) is not of the simple exponential type

assumed. For all these extensions, only the general approach of the unilateral variational schemata remains.
This approach, while familiar through its use in many similar situations in the present period, actually goes
wever famous Pigou’s discussion has become in transportation science, it is interesting to note that in subsequent editions of the
Pig24, Chapters 8 and 10, Pig29, Chapter 9, Pig46, Chapters 9 and 11], Pigou had replaced it with examples from production
ics.
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back to the work of Willard Gibbs, who applied it (in the case of finite sums, rather than integrals) in his

theory of the equilibrium of heterogeneous substances, an epochal work of the last century.

But a much more fundamental question is in order: When can the present methods, or anything like them

using the same general approach, have any hope of being applicable? The answer is that the pre-conditions of
the present type of approach are that the pay-off P should be additive in the separable portions of effort (so

that it can be expressed as an integral, in some sufficiently general sense); and, furthermore, that the sep-

arate returns of the portions of effort be functions of these portions, together with the local conditions.
He then goes on the present a simple extension of the search problem where separability fails.
In the book ‘‘Resource Allocation Problems’’ by Ibaraki and Katoh [IbK88], Koopman’s papers [Koo53,

Koo56b,Koo56c,Koo57] and the problem (9) represent the first example mentioned in the book, which how-
ever has no reference to Gossen or Gibbs.

Charnes and Cooper [ChC58b] and Karush [Kar62] furnished additional theory and a first example algo-
rithm for the problem, respectively; the algorithm of [ChC58b] is based on the Lagrangian dual formulation of
(9) while that of [Kar62] is based on dynamic programming. de Guenin [deG61] extends the search algorithm
to a general detection probability distribution; further developments in that area for the problem of moving
targets are found in, for example, [Zah63,Luk77,Man82]. A book containing many references to optimal
search problems and methods is [Sto75,PIS02] includes several references to the Russian activities in the the-
ory of search since the 1940s.

2.1.5. A weapons allocation problem

We next consider a similar game but of a different origin than Koopman’s. John M. Danskin [Dan66,
Dan67] utilized Gibbs’ Lemma in the investigation of a weapons allocation game of this form:
maximize
x2X

minimum
y2Y

Xn

j¼1

vjð1� aje
�jjxj=yjÞyj ;
where X :¼ fx 2 Rn
þ j 1

Tx ¼ bg and Y :¼ fy 2 Rn
þþ j 1

Ty ¼ cg, all constants b, c, vj, jj are greater than zero
and aj 2 ð0; 1Þ. This game was invented around 1951 at the RAND Corporation to study the following cold
war problem: Suppose one side allocates anti-missile defenses to various cities. The other side observes this
allocation and then allocates missiles to those cities. The function
/jðxj; yjÞ :¼
vjð1� aje

�jjxj=yjÞyj ; if yj > 0;

0; if yj ¼ 0;

(

is intended to represent the residual value of a target if it is defended by xj defense units and attacked by yj

attack units. The quantity expð�jjxj=yjÞ is the probability that an individual attack unit gets through when
xj=yj is the amount of defense against each attack unit, and jj is the effectiveness of the defense. The value
aj is the probability that a missile attack unit destroys the target, the quantity 1� aj expð�jjxj=yjÞ is the prob-
ability that the target survives an individual attack, and, finally, ½1� aj expð�jjxj=yjÞ�

yj is the probability that
the target survives an attack with yj units. In this game, then, the x-player acts first by constructing defenses,
and the y-player moves in full knowledge of what the x-player has done.

Danskin especially analyzes the problem for one of the players, namely the problem (9), characterizing its
unique optimal solution by means of Gibbs’ Lemma. Here, 1� expð�bjxjÞ is the proportionate damage done
to target j with a level xj of attack, the value of which is aj, while bj is the vulnerability of target j. The problem
(9) then is to maximize damage subject to the availability of weapons. The criterion for attacking target j

according to Gibbs’ Lemma is therefore that the product ajbj is larger than some threshold quantity. Through
the Lagrangian relaxation of the constraint we can also reach a purely dual problem in the (only) variable l;
Danskin [Dan67, Section II.3] also provides a simple scheme for finding its optimal value through a line
search. As we shall see, this technique has a much earlier origin within production economics. More on the
Lagrangian relaxation technique and dual line searches will be said in Section 3.1.

Danskin also extends Gibbs’ Lemma to situations where / is neither separable nor differentiable, reaching a
Lagrange multiplier rule for the characterization of an optimal solution based on the possible values of the
directional derivatives of / in admissible directions.
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In related work Danskin also studies the convoy routing and reconneaisance problems (see [Dan62a,
Dan62b,Dan62c], respectively). According to his recollections in the abstract of [Dan62a] the work of that
paper was performed in 1953 for the Operations Evaluations Group of the Navy Department. Interestingly,
therein he states Gibbs’ Lemma (albeit without naming it as such), referring the reader to a proof that will be
found in his forthcoming ‘‘Calculus of Variations and Operations Research’’, which however has not materi-
alized; his only other citation in that paper is to the game theory classic [vNe28], so in the open literature it is
therefore first in his 1967 book on max–min problems that the lemma is credited to Gibbs.

2.2. An example application arising as a subproblem

The following example, together with the special case following it, illustrates that the problem (1) can arise
naturally as a subproblem for important problems when attacked by various decomposition–coordination
methods. The technique applied here is Lagrangian relaxation (or, price-directive decomposition) together
with dual line search procedures; other general methods that can lead to problems of this form are right-hand
side allocation (or, resource directive decomposition) (e.g., [HWC74]), Benders decomposition (e.g.,
[CoL84,AaL90]) and surrogate relaxation. (See the classic references [Eve63,Geo70a,Geo70b,Geo70c,
GrP70,Las70] on these techniques.)

2.2.1. Dual ascent methods for convex problems with linear constraints

Consider the convex program to
minimize
x

/ðxÞ ð10aÞ

subject to �T
i x ¼ di; i ¼ 1; . . . ;m; ð10bÞ

xj 2 X j; j ¼ 1; . . . ; n; ð10cÞ

where / : Rn ! R is a convex function of the form (1a), each set xj is of the form in (1c), and for
i ¼ 1; . . . ;m�i 2 Rn and di 2 R are given data.

To introduce the Lagrangian dual function q we suppose we have at hand a dual vector �k 2 Rm, whence the
minimum of the Lagrange function over

Qn
j¼1X j yields
qð�kÞ :¼ minimum
x2
Qn

j¼1
X j

/ðxÞ þ
Xm

i¼1

�kið�T
i x� diÞ

( )
:

Note that the minimization problem actually separates into n independent one-variable problems. We suppose
that the function q is finite on Rm. In order to solve the problem of maximizing this function over Rm, we con-
sider a dual ascent procedure, which means that we generate directions of change, p 2 Rm, and that we are
interested in solving the line search problem to
maximize
aP0

qð�kþ apÞ: ð11Þ
We will also be looking more specifically at the problem of optimizing q over a specific coordinate direction
given the current value �k, since such algorithms are quite popular. In that case, p ¼ ei, where ei is the ith unit
vector; then, we will also allow a in (11) to become negative.

Suppose that a� P 0 solves (11). Then, a* is a Lagrange multiplier in the primal problem to
minimize
x

/ðxÞ þ �kTðEx� dÞ
� �

ð12aÞ

subject to pTðEx� dÞ 6 0; ð12bÞ
xj 2 X j; j ¼ 1; . . . ; n; ð12cÞ
where E is the m� n matrix with rows �T
i .

To see this, notice that if a* solves (11), then, in particular, the minimum value of the Lagrangian function
equals qð�kþ a�pÞ. But the Lagrangian function (12) is precisely /ðxÞ þ ð�kþ a�pÞTðEx� dÞ, whence this equal-
ity implies that a* indeed is the Lagrange multiplier sought.

Notice that the problem (12) is of the form (1).
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Let, in particular, now p ¼ ei, the ith unit vector, and so consider the coordinate search problem of max-
imizing q over ki, keeping all the other indices fixed at their values at �k. Then, the optimal value is k�i ¼ �ki þ a�,
where a* is a Lagrange multiplier in the problem to
minimize
x

f/ðxÞ þ �kTðEx� dÞg ð13aÞ

subject to �T
i x ¼ di; ð13bÞ

xj 2 X j; j ¼ 1; . . . ; n: ð13cÞ

In other words, performing a coordinate search in the dual space in the variable ki amounts to Lagrangian

optimally satisfying constraint i in the primal problem. If �k ¼ 0m, then the dual coordinate search is equivalent
to solving a relaxation of the original problem (10), where only constraint i in (10b) is present.

The last result is not surprising at all; it simply says that to optimize over a dual variable is equivalent to not
Lagrangian relaxing the corresponding primal constraint; as we are not Lagrangian relaxing that constraint,
we equivalently eliminate that dual variable! For the more general first result, we can observe that a dual line
search corresponds to solving a primal problem where the linear constraints have been surrogate relaxed with a
particular vector of relaxation parameters, namely p; see [Glo68,Geo69,GrP70,KaR79] for more on surrogate
relaxation.

We next specialize this development to the important problem of minimum convex cost network flows,
which is an application where dual ascent methods have been applied for several decades.

2.2.2. Dual ascent methods for separable strictly convex network flows
Consider now the particular problem of the minimization of a separable strictly convex cost function over

the feasible flows in a single-commodity network. This special case of the above problem corresponds to let-
ting E be the node–link incidence matrix for the corresponding network representation, where each element eij

equals �1 (1) if node i is the origin (destination) node of link j, and 0 otherwise; the value di is the demand
value for node i, with di < 0 ðdi > 0Þ if node i is a source (sink) node, and the elements of d sum to zero.

In this case, the gradient of q at �k has a particularly simple form. Suppose we rename the variable vector x
such that each element is denoted xik, indicating the flow on link j ¼ ði; kÞ from node i to node k; also, we
denote the set of links by L and the set of nodes by N. From the special form of the problem the Lagrangian
function has terms for each variable xik of the form /ikðxikÞ þ ðki � kkÞxik.

By the sign conventions we then have that the partial derivative of the Lagrangian dual function q at k with
respect to each coordinate ki is as follows:
oqðkÞ
oki

¼
X

k:ði;kÞ2L
xikðki � kkÞ �

X
k:ðk;iÞ2L

xkiðkk � kiÞ � di; i 2N;
where x(k) is the Lagrangian minimizer.
This result comes as no surprise, knowing that the optimality conditions of the dual problem is that

rqðk�Þ ¼ 0m, or, that Ex� ¼ Exðk�Þ ¼ d holds: the partial derivative of q with respect to ki equals the violation
(or, slack) in the ith flow conservation constraint; in the context of network flows, the violation of flow con-
servation is also called the divergence (or, surplus or imbalance) of node i.

In order to reach a dual optimal solution, it seems natural to utilize the primal–dual relations established
above, and therefore to try to balance node i’s flow through the manipulation of the dual price ki; this is the
main ingredient in a coordinate-wise dual ascent algorithm for the problem. From our previous example, we
know that performing a restricted dual search in which q is maximized over the single dual price ki, that is,
performing a line search in the ith dual coordinate, is equivalent to satisfying the ith equality constraint (in
a Lagrangian optimal manner). If oqðkÞ

oki
> 0, this means that too much net flow leaves (or, too little net flow

reaches) the node. In order to balance the flow, a line search would then increase the value of ki.
From the above we can see that this line search problem is equivalent to a special form of separable prob-

lem (1), and is therefore amenable to be solved using the algorithms surveyed in this paper.
Some of the articles presented later on in this survey are devoted to the solution of the above network flow

problem by means of Lagrangian relaxation and dual ascent. This technique is very old, and applications are
abundant, including problems in migration theory, tomography, and many others, as well as several types of



12 M. Patriksson / European Journal of Operational Research 185 (2008) 1–46
traditional network flow problems. To mention but a few references, see [Hil57,Bre67,Cry71,BaK78,
BaK80,Her80,CeL81,OhK81,CoP82,OhK84,ZeM85,CDZ86,OOK86,CeH87,ZeM88,NEK90,ZeC91,Cur93],
which all describe coordinate-wise dual search algorithms, dual ascent methods that operate over several coor-
dinates simultaneously in [Pan84,Tse90,Ven91,HaH93,WuV95], the surveys in [LaS81,ErS90,ScZ90,CeZ97],
the classic by Kruithof [Kru37] (sometimes called the RAS algorithm) and [DEs59,Osb60,Fur62,Sin64,
Gra71,EvK74,Mur77,JeS79,Mac79,BHT87,BeT89,Tse91]. Further theoretical results on dual line searches,
in particular for quadratic problems, are found in [Pan84,LiP87,TsB87,VeH88,BeT89,Tse90,TsB90,Ven91].
3. A survey of techniques for our problem

The two subsections to follow describe the two main approaches to the problem (1). The first class of algo-
rithms utilizes the simple form of the KKT conditions and/or the Lagrangian dual problem which has only
one variable. Since the optimal value of the multiplier l is found through a line search and the values of
the primal variables are only generated implicitly, we refer to this class of algorithms as a dual one. In the
second class of algorithms, denoted pegging algorithms, an optimal solution x* is built up from solutions to
relaxations of (1) wherein the bound constraints (1c) are relaxed. It is a recursive algorithm wherein at each
iteration some variables will receive their optimal values. In the process the Lagrange multiplier is also opti-
mized, but only implicitly, whence we refer to this as a primal algorithm.

In the annotated bibliographies that follow each algorithm class description we group together, in a
(roughly) chronological order, work where algorithms are explicitly described. Under the term ‘‘Problem’’
we provide any special properties of the problem introduced beside those already stated when presenting
the general problem (1); so, for example, we do not state that each function /j is convex and in C1, and
the default form of xj is the finite interval ½lj; uj�. Under the term ‘‘Origin’’ we explain to which concrete prob-
lem the algorithm is applied; if there is no specialization compared to be statements under ‘‘Problem’’ then this
item is deleted. Actual methodological particulars are provided under the term ‘‘Methodology’’, while under
the term ‘‘Citations’’ we collect the most relevant citations in the work, if any. Under ‘‘Notes’’ we provide any
additional remarks that are worth mentioning, such as whether the work contains comparative numerical
experiments with conclusions.

3.1. Lagrange multiplier algorithms

3.1.1. Introduction

Algorithms based on the Lagrangian relaxation of the explicit constraint (1b) have an older history than the
primal ‘‘pegging’’ algorithms. This is clearly due to the fact that pegging algorithms quite strongly rest on the
Karush–Kuhn–Tucker (KKT) conditions (and the algorithmic developments in most of the relevant references
are based on KKT arguments) which did not become widely available until the end of the 1940s and early
1950s with the work of John [Joh48], Karush [Kar39], and Kuhn and Tucker [KuT51]. Lagrangian based algo-
rithms have been present much longer and the famous ‘‘Lagrange multiplier method’’ for equality constrained
optimization is classic in the calculus curriculum. While in theory such algorithms extend neither to inequality
constraints nor to the presence of a ground set X j 6¼ R, the former poses no problem as we have discussed in
Section 1, since we have only one inequality constraint; the latter imposes additional conditions that in a one-
variable problem are easy to accommodate. Indeed, Lagrange multiplier techniques for our problem (1) are
older, dating back at least to the mid 1950s, if not earlier: the earliest reference found so far is to Churchman
et al. [CAA57], although the Lagrange multiplier algorithm therein is a simple grid search method. We also
include in our discussions below the unpublished RAND report by Beckmann [Bec52], although it does
not contribute to the field of numerical solution methods; the reason for discussing it is that it has been
referred to on at least one occasion in a survey paper as if it did contribute to the field. (We note also that
in every reference to [Bec52] cited in this paper, starting with the influential referencing in the text book
[CAA57], the year 1952 has been erroneously replaced by 1942.)

Introducing the Lagrange multiplier l P 0 for the constraint (1b) we obtain the following conditions for
the optimality of x* in (1):
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l� P 0; gðx�Þ 6 0; l�gðx�Þ ¼ 0; ð14aÞ
x�j 2 X j; j ¼ 1; . . . ; n; ð14bÞ
and
x�j ¼ lj; if /0jðx�j ÞP �l�g0jðx�j Þ; j ¼ 1; . . . ; n; ð14cÞ
x�j ¼ uj; if /0jðx�j Þ 6 �l�g0jðx�j Þ; j ¼ 1; . . . ; n; ð14dÞ
lj < x�j < uj; if /0jðx�j Þ ¼ �l�g0jðx�j Þ; j ¼ 1; . . . ; n: ð14eÞ
For the fixed optimal value l* of the Lagrange multiplier the conditions (14c)–(14e) are the optimality condi-
tions for the minimization over x 2

Qn
j¼1X j of the Lagrangian function defined on

Qn
j¼1X j � Rþ,
Lðx; lÞ :¼ �blþ
Xn

j¼1

f/jðxjÞ þ lgjðxjÞg:
Its minimization over x 2
Qn

j¼1X j for a given l P 0 separates into n problems, yielding the Lagrangian dual
function
qðlÞ :¼ �blþ
Xn

j¼1

minimum
xj2X j

f/jðxjÞ þ lgjðxjÞg; l P 0: ð15Þ
By introducing additional properties of the problem, we can ensure that the Lagrangian dual function q is
not only concave but finite on Rþ and moreover differentiable there. Suppose, for example, that for each j,
/jð�Þ þ lgjð�Þ is weakly coercive on xj for every l P 0 [that is, that either xj is bounded or that for every
l P 0, /jðxjÞ þ lgjðxjÞ tends to infinity whenever xj tends to �1], and that /j is strictly convex on xj. In this
case, then, the derivative q 0 exists on Rþ and equals
q0ðlÞ ¼
Xn

j¼1

gjðxjðlÞÞ � b;
where x(l) is the unique minimum of the Lagrange function over
Qn

j¼1X j. Thanks to this simple form of the
dual derivative, the maximum l* of q over Rþ can be characterized by the complementarity conditions (14a),
and the conditions (14) are the primal–dual optimality conditions for the pair of primal–dual convex
programs.

If we, as before, assume that l� 6¼ 0, we search for l� > 0 such that q0ðl�Þ ¼ 0 (or, in other words,
gðxðl�ÞÞ ¼ 0), that is, we need to solve a special equation in the unknown l, where the function q 0 is implicitly
defined, but is known to be decreasing since q is concave. This equation can of course be solved through the
use of any general such procedure [for example, bisection search takes two initial values �l and l with q0ð�lÞ > 0
and q0ðlÞ > 0, then iteratively cancels part of the initial interval given the sign of q 0 at its midpoint ð�lþ lÞ=2],
but the structure of q 0 makes specialized algorithms possible to utilize.

From the above optimality conditions for the Lagrangian minimization problem over
Qn

j¼1X j we obtain
that
xjðlÞ ¼
lj; if l P lþ :¼ �/0jðljÞ=g0jðljÞ;
uj; if l 6 l� :¼ �/0jðujÞ=g0jðujÞ;
xj; if /0jðxjÞ þ lg0jðxjÞ ¼ 0:

8><
>:
As a special case, consider the set X :¼ fx 2 Rn j 1Tx ¼ b; l 6 x 6 ug with b > 0. The above formula then
simplifies to
xjðlÞ ¼
lj; if l P lþ :¼ �/0jðljÞ;
uj; if l 6 l� :¼ �/0jðujÞ;
xj; if /0jðxjÞ ¼ �l;

8><
>:
and we learn again the strong connection to Gibbs’ Lemma 1 in the characterization of an optimal solution.
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In a rudimentary algorithm we order these indices (or, breakpoints) l+ and l� in an increasing (for
example) order into fl1; . . . ; lNg, where N 6 2n due to the possible presence of ties. Finding l* then
amounts to finding an index j* such that either q0ðlj� Þ ¼ 0 (whence we are done), or that q0ðlj� Þ > 0 and
q0ðlj�þ1Þ < 0 and then performing an interpolation between these two values such that l� 2 ðlj� ; lj�þ1Þ and
q0ðl�Þ ¼ 0.

Two decisions thus need to be made: how to find the index j*, and how to perform the interpolation. Start-
ing with the former, the easiest means is to run through the indices in ascending or descending order to find the
index where q 0 changes sign. (We will refer to this methodology by ranking.) If we have access to indices j+ and
j� for which q0ðljþÞ > 0 while q0ðlj�Þ < 0, then we can choose the midpoint index, check the corresponding
sign of q 0, and reduce the index set thereafter. (We will refer to this methodology by bisection search.) Given
the sorted list, we can also find this index in some random fashion. (We will refer to this methodology by ran-

dom search.)
As remarked above, algorithms such as bisection search can be implemented without the use of the break-

points, and therefore without the use of sorting, as long as an initial interval can somehow be found; also gen-
eral methods for solving the equation q0ðlÞ ¼ 0, such as the secant method or regula falsi, can be used even
without an initial interval; notice however that q 62 C2, whence a pure Newton method is not guaranteed to be
well-defined.

If the functions /j and gj are quadratic and linear, respectively, the interpolation can be performed
exactly, since the corresponding equation is linear; otherwise, it is in general an infinitely convergent
procedure.

While the sorting operation used in the ranking and bisection search methods takes Oðn log nÞ time it is pos-
sible to lower the complexity by choosing the trial index based on the median index, which is found without the
use of sorting; the complexity of the algorithm is then reduced to O(n). It is not clear, however, that the latter
must always be more efficient, since the ‘‘O’’ definition calls for n to be ‘‘large enough’’. We also remark that in
the case when the problem (1) arises as a subproblem in an iterative method, as the method converges the data
describing the problem will tend to stabilize. This fact motivates the use of reoptimization of the problems,
which most obviously can be done by using the previous value of the Lagrange multiplier as a starting point
and/or utilizing the previous ordering of the breakpoints; in the latter case, the Oðn log nÞ sorting complexity
will eventually drop dramatically in practice, and even Oðn2Þ sorting methods may be competitive due to their
better reoptimization capabilities.

To summarize the above class of methods, we may say that they are explicitly dual, since they work in the
dual space. The methods are on the other hand also implicitly primal, since they in each step may identify opti-
mal values of one or several primal variables xj at their respective bounds.

Since we have opted to include only references to methods solving our problem and not any generalizations
unless they do treat our problem as a subproblem, some perhaps natural references are omitted; we refer, for
example, to papers that treat the case of / non-separable. (For example, the algorithms in [HoI99] for the non-
separable case reduce to a general dual search method and bisection, respectively; a descent algorithm for the
non-separable case is also given in [KaI98]).

For the problem at hand, the principle of optimizing the value of l is discussed in [CAA57,Ber60,Eve63,
Tak63,Dan67, pp. 11–12, Roc70, pp. 285–287, Geo70a,Geo70b,Geo70c,GrP70,Tak70], among others, but
without explicit details or referring to trial-and-error techniques only; the term grid search refers to one such
technique.
3.1.2. Annotated bibliography
[CAA57] C.W. Churchman, R.L. Ackoff and E.L. Arnoff, Introduction to Operations Research (Chapter 10:

Inventory Models with restrictions)
(Problem) /jðxjÞ ¼ cj=xj þ bjxj, cj > 0, bj > 0; (non)linear inequality (gjðxjÞ ¼ dj=xj, dj > 0; or aj > 0);
lj ¼ �1, uj ¼ 1

(Origin) Lot sizing problems with a linear (warehouse space) or nonlinear (machine time) restriction
(Methodology) Grid search



Citations) [Bec52] (erroneously dated to 1942). On p. 261 the authors state: ‘‘What follows is essentially an
adaptation of the technique of Lagrangian multipliers and was suggested by an unpublished paper
of Beckmann.’’ Unless one reads also the bibliographical notes on p. 273 one might believe that
the manuscript [Bec52] contains at least a rudimentary Lagrange multiplier procedure. However,
the bibliographical notes say: ‘‘The articles by Beckman [...] are concerned with necessary and
sufficient conditions for an optimum solution. These conditions may provide the key to improved
methods of calculating solutions.’’ Further citation: [Kle55] (improved numerical techniques)

(Notes) Numerical examples (n ¼ 2). Extends the technique to two inequality constraints.
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[ChC58b] A. Charnes and W.W. Cooper, The theory of search: Optimal distribution of search effort
(Problem) /jðxjÞ ¼ qj expð�axjÞ, qj > 0, qjþ1 6 qj, a > 0; linear equality (aj ¼ 1, b ¼ 1); lj ¼ 0
(Methodology) Ranking
(Citations) Algorithms: [ChL54] (separable programming); theory of search: [Koo52,Koo53,Koo54,

Koo56a,Koo56b,Koo56c,Koo57]; theory: [KuT51]
[Eve63] H. Everett, III, Generalized Lagrange multiplier method for solving problems of optimum allocation
of resources
/
(Problem)

‘
G
A
N
a

/
E
B

jðxjÞ ¼ � log½1� ð1� qjÞ
xj �, qj 2 ð0; 1Þ; linear inequality (aj > 0)
(Origin)
 ‘Cell problem’’ in more complex models; application to a problem in reliability investment

(Methodology)
 rid search

(Citations)
 pplication: [Ket62]

(Notes)
 umerical experiments with a trial-and-error method (n ¼ 4). The method of [Ket62] for

n integer programming version of the problem utilizes dynamic programming; see also
Loa71].
[Sri63] K.S. Srikantan, A problem in optimum allocation
[

(Problem)
 j 2 C2, /00j > 0; linear equality (aj 6¼ 0, b ¼ 10s for some positive integer s); lj P 0

(Origin)
 xtension of an optimal allocation problem in stratified sampling

(Methodology)
 isection search without the use of breakpoints

(Citations)
 pplication: [Ney34]; theory: [ChC61a]

(Notes)
 umerical experiments ðn ¼ 6Þ.

[Bod69] L. Bodin, Optimization procedures for the analysis of coherent structures
A
N

(Problem)
 /j strictly convex, increasing; /jðljÞ > 0; linear inequality (aj ¼ 1); 0 < lj < uj < 1. Special
case: /jðxjÞ ¼ cjð1� exp xjÞ, cj > 0
(Origin)
 Reliability determination at minimum cost for parallel or series systems

(Methodology)
 Ranking

(Citations)
 [BaP65]

(Notes)
 Discusses ‘‘modular decomposition’’ as a means to decompose more complex models with

several explicit constraints into the present one. Considers also solving a parametric model
over the values of the right-hand side b.
[DaS69] S. Dafermos and F.T. Sparrow, The traffic assignment problem for a general network
(Problem)
 /jðxjÞ ¼
qj

2 x2
j , qj > 0; linear equality (aj ¼ 1); lj ¼ 0, uj ¼ 1
(Origin)
 Subproblem for each origin–destination pair in the traffic equilibrium problem within a cyclic
decomposition (Jacobi) algorithm
(Methodology)
 Ranking; referred to as the ‘‘equilibration operator’’

(Citations)
 Model foundations: [Pig20,War52,Bec67,BMW56,FoF58,FoF62,ChC58a,ChC61b]

(Notes)
 Numerical experiments (n ¼ 60).
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(Problem)
/
S
R
M

General: /j 2 C2, /00 > 0; linear equality (aj 6¼ 0); lj ¼ �1, uj ¼ 1 possible. Application:
/jðxjÞ ¼ qj=xj, qj > 0
(Origin)
 Same. Application to optimal allocation in stratified sampling subject to restrictions on strata
estimates, capital budgeting and multistage sampling
(Methodology)
 Bisection search à la [Sri63]

(Citations)
 [Sri63,Kis65]

(Notes)
 Numerical experiments (n ¼ 6); same problem as in [Sri63]. Presents a recursive pegging algo-

rithm; cf. Section 3.2.
[HWC74] M. Held, P. Wolfe, and H.P. Crowder, Validation of subgradient optimization
(Problem)
 /jðxjÞ ¼ 1
2 ðxj � yjÞ

2, linear equality (aj ¼ 1); lj ¼ 0, uj ¼ 1

(Origin)
 Linear minimum cost multicommodity flow problem solved via right-hand side (RHS) allo-

cation, Lagrangian relaxation and subgradient optimization; projection arises in the multi-
plier updating step, one for each commodity
(Methodology)
 Ranking

(Citations)
 Cites [AbS70], where it is explained that G.W. Dantzig had already previously applied RHS

allocation to the given problem

(Notes)
 Numerical experiments (n 2 ½3; 20�).
[Jud75] J.V. Jucker and C. de Faro, A simple algorithm for Stone’s version of the portfolio selection
problem
(Problem)
 jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality (aj ¼ 1, b ¼ 1); lj ¼ 0
(Origin)
 eparable approximation of Markowitz’ portfolio selection problem, taken from [Sto73]

(Methodology)
 anking

(Citations)
 odels: [Mar52,Mar59,Sha63,Sto73]

(Notes)
 umerical experiments (n ¼ 8).
N

[LuG75] H. Luss and S.K. Gupta, Allocation of effort resources among competing activities
(Problem)
 /j strictly convex and increasing; linear inequality (aj ¼ 1)

(Origin)
 Subproblem in a recursive pegging algorithm; cf. Section 3.2

(Methodology)
 Ranking

(Citations)
 Algorithms: [ChC58b,WiG69,Geo70a,Geo70c]

(Notes)
 Notes that having a closed form solutions to each Lagrangian problem is advantageous, and

gives them for some special forms of functions /j.
[KeS77] J.L. Kennington and M. Shalaby, An effective subgradient procedure for minimal cost multicom-
modity flow problems
(Problem)
 /jðxjÞ ¼ 1
2 ðxj � yjÞ

2; linear equality (aj ¼ 1); lj ¼ 0, uj ¼ 1

(Origin)
 Linear minimum cost multicommodity flow problem solved via RHS allocation, Lagrangian

relaxation and subgradient optimization; projection arises in the multiplier updating step, one
for each commodity
(Methodology)
 Refers to the ranking procedure from [HWC74]

(Citations)
 Related models: [War52,ChC61b,HWC74]; price-directive decomposition:

[FoF58,Tom67,WeC72]

(Notes)
 Numerical experiments (n 2 ½8; 12�).
[AHKL80] A.I. Ali, R.V. Helgason, J.L. Kennington, and H. Lall, Computational comparisons among three
multicommodity flow algorithms
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(Problem)
 /jðxjÞ ¼ 1
2 ðxj � yjÞ

2; linear equality (aj ¼ 1); lj ¼ 0, uj ¼ 1

(Origin)
 Linear minimum cost multicommodity flow problem solved via RHS allocation, Lagrangian

relaxation and subgradient optimization; projection arises in the multiplier updating step, one
for each commodity
(Methodology)
 Ranking

(Citations)
 Algorithms: [HWC74,KeS77]

(Notes)
 Numerical experiments, comparing RHS allocation with Dantzig–Wolfe decomposition and

primal partitioning (n 2 ½8; 60�). RHS allocation wins while convergence of that algorithm is
not guaranteed.
[HKL80] R.V. Helgason, J.L. Kennington, and H. Lall, A polynomially bounded algorithm for a singly con-
strained quadratic program
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality (aj ¼ 1, b ¼ 1); lj ¼ 0
(Methodology)
 Bisection search; extends the method from [HWC74] to a more general case of QP

(Citations)
 [HWC74,KeS77,AHKL80] (for applications and special cases);

[ChC58b,Sri63,San71,LuG75,BiH79,McC7X] (for related work)

(Notes)
 Derives a Oðn log nÞ time bound.
[Zip80b] P.H. Zipkin, Simple ranking methods for allocation of one resource
(Problem)
 /j strictly convex, linear equality (aj ¼ 1); lj ¼ 0

(Origin)
 Subproblem in a hierarchical pegging algorithm for the same problem with additional upper

bounds; cf. Section 3.2

(Methodology)
 The ranking method from [LuG75] is the source algorithm. Modifications: (a) allowing for the

inexact determination of the Lagrangian problem’s solution; (b) allows for starting at any
breakpoint. Notes the possibility to replace ranking by bisection search (or Fibonacci search)
and the possibility to restart from the optimum in the previous iteration
(Citations)
 Applications: optimal search effort [ChC58b], marketing [LuG75], capital budgeting [Han68,
p. 81], production [BiH77], aggregation errors [Zip80a], portfolio selection [Jud75,EGP76],
reliability [Bod69], health care [Fet73], and multicommodity flows [HWC74]. Algorithms:
cites the Lagrange multiplier method in [LuG75] as subsuming [ChC58b,WiG69]; disc-
usses also the pegging algorithm from [BiH77] (wrongly supposing that only one variable can
be pegged at any given iteration) and the Lagrange multiplier methods from [Bod69, HWC74,
Jud75]. Further citations: [Koo57,deG61,Kar62,Eve63,Geo70a,Geo70b,GrP70]
(Notes)
 Perhaps the first survey, providing a unified presentation of some previous work.
[Ein81] J.M. Einbu, Extension of the Luss–Gupta resource allocation algorithm by means of first order
approximation techniques
(Problem)
 /j 2 C2 strictly convex and increasing; linear inequality (aj ¼ 1); lj ¼ 0

(Origin)
 Subproblem in a recursive pegging algorithm; cf. Section 3.2

(Methodology)
 Ranking; extension of the analytic method from [LuG75] with the numerical solution of the

Lagrangian problem determining the current Lagrange multiplier estimate

(Citations)
 [LuG75].
[Hor81] R. Horst, On reducing a resource allocation problem to a single one-dimensional minimization of a
differentiable convex function



18 M. Patriksson / European Journal of Operational Research 185 (2008) 1–46
(Problem)
 /j strictly convex, decreasing, /jð0Þ ¼ 0; linear equality; lj ¼ 0

(Origin)
 Same

(Methodology)

(Citations)
 Convex programming techniques: [ChC58b,LuG75]; dynamic programming techniques:

[WiG69]; duality: [Geo71]

(Notes)
 Derives the primal–dual optimality conditions of the problem; proposes no algorithms.
[Was81] A.R. Washburn, Note on constrained maximization of a sum
(Problem)
 /j strictly convex; linear equality (aj ¼ 1); lj ¼ 0

(Methodology)
 Ranking, possibly with a random starting index

(Citations)
 Algorithms: [ChC58b,Eve63,Sto75,Bro80]

(Notes)
 Numerical experiments (n ¼ 8).
[OhK80] A. Ohuchi and I. Kaji, Algorithms for optimal allocation problems having quadratic objective
function
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality (aj ¼ 1); lj > 0
(Origin)
 Subproblem in a coordinate dual ascent method for a strictly convex quadratic optimal
allocation problem
(Methodology)
 The Lagrange multiplier methods ‘‘polynomial approximation’’ (PA; quadratics preferable),
‘‘sequential search’’ (SS; bisection search), hybrid method ðHB ¼ PAþ SSÞ
(Citations)
 [Tak70] (consider the same problem, except for uj ¼ 1, provides a coordinate-wise search
method for the Lagrange dual but without details or theory) [Tak63,Geo70a,Geo70b]
(background theory); [KIM79] (extension to integer programming case)
(Notes)
 Numerical experiments (n 2 ½10; 100�; randomly generated instances); HB best.
[OhK81] A. Ohuchi and I. Kaji, An algorithm for the Hithcock transportation problems with quadratic cost
functions
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality (aj > 0); lj > 0
(Origin)
 Parallel subproblems in a coordinate dual ascent method for a strictly convex quadratic
transportation problem
(Methodology)
 The three Lagrange multiplier methods from [OhK80]

(Citations)
 Algorithms: [Tak70,OhK80,AHU74] for bisection search complexity

(Notes)
 Numerical experiments using HB (number of source nodes N1 2 ½40; 100�; number of ter-

minal nodes N2 2 ½80; 200�; randomly generated instances); reference to [HKL80] added in
proof.
[OhK84] A. Ohuchi and I. Kaji, Lagrangian dual coordinatewise maximization algorithm for network trans-
portation problems with quadratic costs
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality (aj > 0); lj P 0
(Origin)
 Parallel subproblems in a coordinate dual ascent method for a strictly convex quadratic
transportation problem
(Methodology)
 The three Lagrange multiplier methods from [OhK80]

(Citations)
 [Tak70,OhK80,AHU74] for bisection search complexity

(Notes)
 Numerical experiments using HB (n 2 ½30; 100�; complete graphs; randomly generated ins-

tances); favourable comparison to Wolfe’s [Wol74] QP algorithm (tests on problems with
n 2 ½5; 7�); no reference to [HKL80,OhK81] but algorithm better explained.
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(Problem)
 /jðxjÞ ¼ cj=xj þ bjxj, cj P 0, bj P 0; linear inequality (aj > 0); lj ¼ 0, uj ¼ 1

(Methodology)
 Bisection search without sorting or use of breakpoints; acceleration by Newton method or

regula falsi; initial interval given by a projection of the result of Harris’ [Har15] EOQ formula

(Citations)
 Previous ‘‘trial-and-error’’ procedures: [Bec52,CAA71], erroneously dating the former to 1942.

Because of this error in dating the reference [Bec52] (which is the same as in [CAA57]), we
believe that the author neither gained access to it nor read the relevant bibliographical notes in
[CAA71]. Indeed, his citation reads: ‘‘ Solution procedures for [...] have been proposed e.g. by
Beckmann and Churchman, Ackoff and Arnoff, which try to approximate the optimal solution
by a trial and error generation of the Lagrange multipliers.’’ See the item above for [CAA57]
for a further discussion
(Notes)
 Notes that no bounds on l* are provided in the previous work. Numerical experiments
(n 2 ½10; 500�). Main purpose to propose a bound on l* rather than actually finding its value.
[FeZ83] A. Federgruen and P. Zipkin, Solution techniques for some allocation problems
(Problem)
 /j strictly convex; linear equality (aj ¼ 1); lj ¼ 0

(Origin)
 Parallel subproblem in a RHS allocation algorithm for a problem with additional linear

generalized upper bound (GUB) constraints

(Methodology)
 Derived from the ranking algorithm from [Bod69]; replaces sorting by work with two heaps;

no complexity analysis; also discusses the reoptimization of the sorted list, and discusses the
invertibility of /0j and proposes a numerical approximation scheme (cites [Zip80b])
(Citations)
 Related work [Bod69,LuG75,OhK80,Zip80b,BiH81,Roh79]—see [Roh82] for the published
version of the latter; data structures [Knu68,AHU74]
(Notes)
 The paper [Roh82] contains a discussion on the productivity of the activities, measured in
terms of the quantity /jðx�j Þ=x�j , and relates this number to the value of /0jð0Þ for some special
return functions given in [ChC58b,LuG75].
[Bru84] P. Brucker, An O(n) algorithm for quadratic knapsack problems
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality
(Methodology)
 Median search

(Citations)
 [HKL80,AHU74] for median complexity O(n)
[CDZ86] R.W. Cottle, S.G. Duvall, and K. Zikan, A Lagrangean relaxation algorithm for the constrained
matrix problem
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality (aj ¼ 1); lj ¼ 0
(Origin)
 Parallel subproblems in block coordinate dual ascent method for the quadratic transportation
problem
(Methodology)
 Bisection search; reoptimization of sorting using permutation vector from [Knu73, p. 80]; also
tests using the parametric principal pivoting (PPP) algorithm; also investigates the use of
successive over-relaxation (SOR) in the coordinate ascent method
(Citations)
 Problem [Bac70,BaK78]; other coordinate ascent algorithms
[Tak63,Tak70,OhK80,OhK81,OhK84]; subproblem algorithms
[Roc70,Jud75,FLR78,KIM79,HKL80,Roc81,Bru84]; cyclic coordinate ascent [Zad69,Zan69];
SOR [CoP82,Cot84]; parametric principal pivoting [Cot72]
(Notes)
 Discusses the problem of unbounded level sets of the Lagrangian dual problem; imposes a
Slater condition. Remarks that the test problems in [OhK84] are ‘‘easy’’. Numerical experi-
ments (number of source nodes N1 ¼ 54; number of terminal nodes N 2 ¼ 55; taken from
[BaK78,BaK80]); reoptimization of sorting reduces CPU time by half; SOR another half;best
algorithm PPP (note: equivalent to using median search, or ordinal statistics, cf. [RJL92]).
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[DFL86] J.-P. Dussault, J.A. Ferland, and B. Lemaire, Convex quadratic programming with one constraint
and bounded variables
(Problem)
(Problem)
(Origin)
(Methodology)
/jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality (aj P 0); lj ¼ �1, uj ¼ 1 possible
(Origin)
 Positive semidefinite quadratic program solved through a series of separable approximations;
parallel subproblems in coordinate dual ascent method for the problem
(Methodology)
 Bisection search

(Citations)
 Refers to the complementary pivot algorithm from [Pan80] as reducing to bisection search

for quadratic programs with a diagonal Hessian; other Lagrange multiplier search methods
[FLR78,HKL80,Roc70]; the active set method from [McC79]
(Notes)
 Numerical experiments with two versions of the complete algorithm (exact line search; unit
step length) and the parametric linear complementarity algorithm from [Pan80] (n ¼ 50); the
latter wins when the original problem matrix is less diagonally dominant.
[Vid84] P.V.V. Vidal, A graphical method to solve a family of allocation problems
(Problem)
 /jðxjÞ ¼ �rjð1� expð�kjxjÞÞ, rj; kj > 0; linear equality; lj ¼ 0

(Methodology)
 Graphical method for finding a zero of q 0 based on a nonlinear transformation that creates a

piece-wise linear q 0
(Citations)
 General methodologies: [Sri63,Vid70,San71,BiH79]; dynamic programming: [WiG69]; Kuhn–
Tucker based: [LuG75]; derivation of the Lagrangian: [Hor81]
(Notes)
 Numerical experiment (n ¼ 4) taken from [WiG69]. Provides a table of references to
applications where other nonlinear transformations also lead to piece-wise linear q 0.
[Vid86] P.V.V. Vidal, Solving a family of simple allocation problems
(Notes)
 Same algorithm, same numerical example, same methodological references, and same table as in
[Vid84], but without a reference. Discusses an extension to a non-differentiable problem.
[Vid87] P.V.V. Vidal, A simple method to solve some simple allocation problems
(Notes)
 Same algorithm, same numerical example, same methodological references, and same table as in
[Vid84], but without a reference.
[CaM87] P.H. Calamai and J.J. Moré, Quasi-Newton updates with bounds
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality
(Origin)
 Broyden quasi-Newton update of Jacobian approximation

(Methodology)
 Median search

(Citations)
 [AHU74] for median search complexity O(n)

(Notes)
 Notes that the result of the median search also provides important information when the

original problem is inconsistent.
[IbK88] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic Approaches
Linear equality ðaj ¼ 1Þ
Resource allocation problem from several areas
Pegging (the algorithm BRELAX2 from [BiH81]) or recursive pegging (first converting the se
to Xj to ½0; uj�, then utilizing the Lagrange multiplier algorithm BRELAX1 from [Zip80b]
pegging (the algorithm from [BiH81], then denoted RELAX) for the special case of X j ¼
½0; uj�
t
);



(Citations) Applications: optimal search effort [Koo53,Koo56a,Koo56b,Koo57,ChC58b,Kar58,Kar62], opti-
mal sample allocation in stratified sampling [Ney34,Sri63], optimal portfolio selection [Mar52,
Mar59,Sha63,Sto73,Jud75,EGP76,Zip80b], production planning [BiH77,BHH81,BiH81,Zie82],
resource distribution [FeZ83,FeZ84], mass advertising ([Kot71]; here, /j is ‘‘S-shaped’’), mar-
keting effort allocation [Lus73], reliability problems [Bod69], bidding for oil and gas ventures
[FeG86], allocation of people to evacuation routes [Fra78], subproblems in subgradient algo-
rithms [HWC74], the apportionment problem [BaY82]. Algorithms for continuous problems:
pegging algorithms [Zip80b,BiH81], Lagrange multiplier methods [LuG75,HKL80,OhK80,Zip80b,
Was81,Bru84], and variations [Ein81]

(Notes) Comprehensive overview of the linearly constrained allocation problem with extensions to mini-
max/maximin, lexicographic minimization, submodular and integrality constraints, and more.
Notes that the RELAX algorithms can be extended to the case of non-differentiable functions /j.
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[RoW88] R.T. Rockafellar and R.J.-B. Wets, A note about projections in the implementation of stochastic
quasigradient methods
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; g0j > 0 and bounded away from zero; lj ¼ �1, uj ¼ 1 possible
(Origin)
 Projection subproblem in a stochastic quasigradient method

(Methodology)
 Ranking; interpolation by the secant method; proposes also the secant method for the

Lagrangian minimization problem when xjðlÞ is not explicitly available

(Citations)
 Related work: [FLR78,McC79,HKL80,BiH81,CDZ86]

(Notes)
 Acknowledges R. Cottle for supplying references.
[VeK88] J.A. Ventura and C.M. Klein, A note on multi-item inventory systems with limited capacity
(Problem)
 /jðxjÞ ¼ cj=xj þ bjxj, cj P 0, bj P 0; linear inequality (aj > 0); lj ¼ 0, uj ¼ 1

(Methodology)
 Refinement of algorithm from [Zie82]; initial interval given from the least/most costly items

relative storage requirements, followed by a Newton/regula falsi step; proposes an algorithm
based on the continued use of such steps, but without a formal convergence analysis
(Citations)
 Background [Har15], marginal cost solution technique [JoM74], previous bounds on l*

[Zie82].

(Notes)
 Main purpose to propose a bound on l* rather than actually finding its value.
[Ven89] J.A. Ventura, Algorithms for quadratic transportation networks
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality
(Origin)
 Line search subproblem in the Polak–Ribière [PoR69] dual ascent method for the quadratic
transportation problem
(Methodology)
 Two algorithms: (a) the pegging algorithm from [BiH81], extended to possibly negative con-
straint coefficients and developed in [VeH88]; (b) the bisection search algorithm from [CDZ86],
utilizing reoptimization of breakpoints (and claiming that [CDZ86] does not utilize reoptimi-
zation) as well as pegging variables based on the sign of q 0; the algorithm does not use sorting
of the breakpoints
(Citations)
 Applications: communication networks [Min78,Min84], adjustment of input–output tables
[BaK78,BaK80,BiH81], estimation of contingency tables in statistics [DeS40,Fri61], and
projection of interzonal transfers [DeM80,Oma67]; Lagrangian dual algorithms: cyclic
coordinate ascent [CDZ86], gradient-based dual ascent [KNS74,VeH88]
(Notes)
 Numerical experiments (number of source nodes N 1 2 ½25; 150�; number of terminal nodes
N2 2 ½25; 150�). Best strategy found was to initially use pegging, then transfer to bisection
search (the latter utilizes a good starting solution better), but difficult to find a good transition
strategy.



[Ven91] J.A. Ventura, Computational development of a Lagrangian dual approach for quadratic networks
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(Problem)
(Problem) /jðx
(Origin) Line

relax
each
/jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality
(Origin)
 Line search subproblem in the Polak–Ribière [PoR69] dual ascent method for the quadratic
transportation problem
(Methodology)
 Three algorithms: (a) the bisection search algorithm from [HKL80], extended to cover non-
unit constraint coefficients; (b) random search without sorting; (c) the pegging algorithm from
[BiH81], extended to cover non-unit constraint coefficients
(Citations)
 Applications: resistive electrical networks [CoK77], equilibrium import–export trade problems
[Gla78], quadratic data fitting [BaK80], optimal economic operation of electric power systems
[ElC79], projecting and forecasting traffic matrices in telecommunication networks [DeM80];
Lagrangian dual algorithms [BaK80,CoP82,OhK84,ZeM85,CDZ86, BeE87,BHT87]; [LiP87]
for the interpretation of dual line searches
(Notes)
 Numerical experiments (n 2 ½50; 500�); the pegging algorithm wins, and random search is
somewhat faster than bisection search; discusses a potential improvement from utilizing that
the step lengths become smaller by eventually switching from pegging to bisection search, but
without testing. Presents a primal feasibility heuristic for adjusting the infeasible Lagrangian
problem solutions x(l) into feasible flows; the heuristic is however not optimizing in the limit
as l! l�.
[DaN89] S. Dafermos and A. Nagurney, Supply and demand equilibration algorithms for a class of market
equilibrium problems
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality (aj ¼ 1)
(Origin)
 Subproblem for each pair of supply and demand within a cyclic decomposition (Jacobi)
algorithm for a market equilibrium model with linear and separable supply and demand
functions
(Methodology)
 Ranking; referred to as the ‘‘equilibration operator’’; adaptation of the algorithm from
[DaS69] to the given problem
(Citations)
 Algorithms in the same spirit: [DaS69,LuG75,HKL80,Zip80b,BiH81]; iterative algorithm for
the same problem: [Nag87].
[PaK90] P. Pardalos and N. Kovoor, An algorithm for a singly constrained class of quadratic programs
subject to upper and lower bounds
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality (aj ¼ 1); lj ¼ 0
(Methodology)
 Proposes a randomized version of the median search algorithm, having Oðn2Þ worst-case and
O(n) expected complexity; theoretically compares the algorithm with the median search
algorithm from [Bru84] and the bisection search algorithm from [HKL80]
(Citations)
 Median complexity: [Blu+72,AHU74]; projection algorithms: [HWC74,HKL80,Bru84,
CaM87]; application to multicommodity network flows [HWC74,Mey84]
(Notes)
 Numerical experiments (n 2 ½500; 4000�); compares randomized median search with bisection
search; the former wins in CPU time by a factor of three. The reference [Bru84] was added
thanks to a referee.
[ShM90] B. Shetty and R. Muthukrishnan, A parallel projection for the multicommodity network model
jÞ ¼ 1
2 ðxj � yjÞ

2; linear equality (aj ¼ 1); lj ¼ 0
ar minimum cost multicommodity flow problem solved via RHS allocation, Lagrangian
ation and subgradient optimization; projection arises in the multiplier updating step, one for
commodity



(Methodology) Bisection search
(Citations) RHS allocation algorithm for the problem: [HWC74,KeS77,HKL80], the latter also for the

claim that RHS allocation is the best decomposition scheme for the problem
(Notes) Numerical experiments

(n 2 ½50; 450�).
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[NiZ92] S.S. Nielsen and S.A. Zenios, Massively parallel algorithms for singly constrained convex
programs
(Problem)
 /j strictly convex; linear equality (aj > 0)

(Origin)
 Subproblem in several network flow type problems

(Methodology)
 Four algorithms: (a) An iterative Bregman projection algorithm originating in [CeL81]; each

iteration consists of a sequence of projection-like operations with respect to a distance measure
in terms of approximations of /j (a ‘‘Bregman function’’), first onto the hyperplane, then onto
the bounds for each variable depending on the result of the hyperplane ‘‘projection’’; the oper-
ations resemble those of the pegging algorithm, but convergence is not finite. (b) The bisection
algorithm, extending that from [HKL80] to non-quadratic /j. (c) A line search method orig-
inating in [Tse90] which provides an underestimate of the optimal step. (d) A Newton-type
algorithm where the formula utilizes left or right derivatives of / 0 depending on its sign. Con-
vergence is established for quadratic /j
(Citations)
 Applications to RHS allocation methods for multicommodity flows [HKL80], row-action
methods in computerized tomography [Her80], nonlinear network flow problems solved by
dual coordinate ascent methods [BeT89] and in matrix balancing [ScZ90], as well as in
other applications [DFL86,PaK90,CoH93]; dual line search methods [HKL80,CeL81,Tse90]
(Notes)
 Numerical experiments (n 2 ½91; 1000�) on massively parallel implementations; the Newton
method is found to be the most robust; does however not implement bisection search but
instead ranking, and remarks that it fares badly for tightly constrained problems and that it
would be a good idea to use bisection instead.
[RJL92] A.G. Robinson, N. Jiang, and C.S. Lemke, On the continuous quadratic knapsack problem
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality (aj > 0); transforms the problem before solution to

/jðxjÞ ¼ 1
2 x2

j

(Methodology)
 Three Lagrange multiplier algorithms: (a) the approximate median based algorithm from
[PaK90], implemented as in [AHU74, p. 102]; (b) the bisection search algorithm from
[HKL80], implemented using Quicksort; (c) the median search algorithm from [Bru84]; and
(d) a dual ‘‘Newton’’ method (as suggested by a referee) with safe-guards against non-
differentiability and non-ascent. Includes the possibility to peg the variables xj based on the
sign of q 0 (à la [Ven89,Ven91]). Also proposes a pegging algorithm; cf. Section 3.2
(Citations)
 Applications: multicommodity flows [AHKL80], traffic equilibrium [DaS69], quadratic
transportation [OhK84], matrix balancing in regional and national economics
[CDZ86,NKR90,NaR92], convex quadratic programming [CDZ86], portfolio selection
[Jud75,Pan80]; references to other pegging algorithms ([Mic86], pointed out by a referee), and
Lagrange multiplier methods [DaS69,HWC74,HKL80,Bru84,CDZ86]
(Notes)
 Notes that the principal pivoting algorithm [CDZ86] reduces to the O(n) ordinal statistics
(median search) algorithm for the given problem. Numerical experiments (n 2 ½100; 4000�)
against the pegging algorithm; the pegging algorithm wins against all the three Lagrange
multiplier methods and is comparable to the Newton method. Notes that the complexity of
bisection search grows more than linearly with n, whereas the others grow linearly.



[GSAB93] S.J. Grotzinger, R. Srinivasan, R. Akella, and S. Bollapragada, Component procurement and allo-
cation for products assembled to forecast: Risk-pooling effects
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(Problem)
 /jðxjÞ ¼ dj
R x̂jþxj

0 ½x̂j þ xj � s�fjðsÞds (convex; fj is a marginal density function); linear equality
(aj ¼ 1)
(Methodology)
 Ranking; advanced start, with first index chosen based on the sign of the constants x̂j; extends
the procedure from [Zip80b] to the case of upper bounds
(Citations)
 Algorithms: [LuG75,Zip80b]

(Notes)
 Numerical experiments (n 2 ½2; 44�).
[MaK93] B.M. Maloney and C.M. Klein, Constrained multi-item inventory systems: An implicit approach
(Problem)
 /jðxjÞ ¼ cj=xj þ bjxj, cj > 0; linear inequality (aj > 0); lj ¼ 0, uj ¼ 1

(Methodology)
 Improves the initial bounds from [VeK88]; cites [HMMS60,Lew81] for the origins of such

bounds; also presents a Newton-type algorithm (denoted the ‘‘implicit algorithm’’) for ob-
taining l*, which utilizes the bounding formula iteratively; the algorithm utilizes an initial
ranking of inventory cost/storage requirement ratios, just as in [Zie82,VeK88]; convergence
is claimed (referring to it being a Newton method) but not established
(Citations)
 Problem definitions [Har15], the ‘‘classic solution technique’’ [HaW63,BuK63,JoM74]; earlier
bounds on l* [Zie82,VeK88]
(Notes)
 Numerical experiments (n 2 ½2; 31�); compares the implicit algorithm with the iterative algo-
rithms from [Zie82,VeK88] and the ‘‘classic solution technique’’; the proposed wins in a clear
majority of the cases. Main purpose still to propose a bound on l* rather than actually finding
its value.
[CoH94] S. Cosares and D.S. Hochbaum, Strongly polynomial algorithms for the quadratic transportation
problem with a fixed number of sources
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality (aj ¼ 1); lj ¼ 0, uj ¼ 1
(Origin)
 Quadratic transportation problem with one source; extended to any fixed number of sources

(Methodology)
 Median search

(Citations)
 Linear median complexity: [Blu+72,Bru84]; original algorithm: [Bru84].
[Hoc94] D.S. Hochbaum, Lower and upper bounds for the allocation problem and other nonlinear optimiza-
tion problems
(Problem)
 /j convex; linear equality (aj ¼ 1); lj ¼ 0, uj ¼ 1

(Methodology)
 Greedy algorithm with arbitrary increments

(Citations)
 Continuous case: [Zip80b,Koo57,LuG75,Bru84]; discrete case: [Koo53,ChC58b,IbK88]

(Notes)
 The algorithm does not require that /j 2 C1.
[HoH95] D.S. Hochbaum and S.-P. Hong, About strongly polynomial time algorithms for quadratic optimi-
zation over submodular constraints
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality (aj ¼ 1); lj ¼ 0, uj ¼ 1
(Origin)
 Special case of a problem with generalized upper bound (GUB) constraints

(Methodology)
 Median search

(Citations)
 Linear time algorithms: [Bru84,CoH94]; median complexity: [Blu+72]

(Notes)
 Also presents an O(n) algorithm for the GUB case.
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[BrS95] K.M. Bretthauer and B. Shetty, The nonlinear resource allocation problem
(Origin)
 Same problem with integral requirements on x, solved by means of continuous relaxation and
branch-and-bound
(Methodology)
 Lagrangian relaxation of the nonlinear constraint; unspecified method for solving the
resulting equation q0ðl�Þ ¼ 0
(Citations)
 ‘‘Generalizes previous work’’ in [HKL80,Bru84,CaM87,PaK90,ShM90] (QP) and [NiZ92]
(linear constraint), and similar approaches for allocation problems in [Zip80b,BiH81,IbK88]
and for production planning in [Zie82,VeK88,MaK93]
(Notes)
 Discusses the cases when the Lagrangian problem has a closed form solution (such as for the
stratified sampling, quadratic knapsack, and production planning problems) or not (such as
in capacity planning in manufacturing networks).
[BSS95] K.M. Bretthauer, B. Shetty, and S. Syam, A branch and bound algorithm for integer quadratic knap-
sack problems
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality (aj > 0)
(Origin)
 Same problem with integral requirements on x, solved by means of continuous relaxation and
branch-and-bound
(Methodology)
 Bisection search

(Citations)
 Applications: promotion models [McC7X]; capital budgeting [Lau70,MSM83,DMS88];

hydrological studies, clique problems in graphs, and location problems [GHS80]; for the
continuous case: resource allocation [BiH79,LuG75]; algorithms for multicommodity flows
[HWC74] and stochastic programs with network recourse [NiZ93]; additional references
found in [IbK88]. Algorithms for the problem:
[HWC74,HKL80,Bru84,CaM87,PaK90,ShM90,PYH91,NiZ92]
(Notes)
 Discusses the reoptimization of the relaxed problem from a previous B & B iteration when
the lower bounds change. Describes the algorithm in the unavailable report by McCallum
[McC7X] as solving the continuous relaxation and applying a rounding heuristic in order to
obtain integer solutions. Numerical experiments (n 2 ½75; 200�).
[Bre96] K.M. Bretthauer, Capacity planning in manufacturing and computer networks
(Problem)
 /jðxjÞ ¼ cjxj; nonlinear inequality (gjðxjÞ ¼ aj=ðxj � hjÞ, aj > 0)

(Origin)
 Same problem with integral requirements on x and a concave objective function, solved by

means of continuous relaxation and branch-and-bound, and where the concave objective
function is replaced by a linear underestimator within each set Xj
(Methodology)
 Lagrangian relaxation of the nonlinear constraint; unspecified method for solving the
resulting equation q0ðl�Þ ¼ 0
(Citations)
 [BiH81,PaK90] included in the reference list but not in the text

(Notes)
 Numerical experiments (n 2 ½75; 300�) on the integer program that compares whether reop-

timization of the continuous subproblems and special heuristics applied at each B & B node
are advantageous; the answer is ‘yes’.
[BiM96a] G.R. Bitran and S.V. Mondschein, Inventory management in catalog sales companies
(Problem)
 /jðxjÞ ¼ �
R x̂jþxj

0 dj½xj � cjðx̂j þ s� xjÞ�fjðsÞds�
R1

x̂jþxj
djðx̂j þ xj � ĉjðs� x̂j � xjÞÞfjðsÞds

(convex; fj is a marginal density function); linear inequality (aj > 0); lj ¼ 0, uj ¼ 1

(Origin)
 Operational submodel in a hierarchical decision-making model including feedback strategies

(Methodology)
 Bisection search without the use of breakpoints

(Citations)
 Applications: [BHH82,BiM96b]; algorithms solving similar models, also by the use of the KKT

conditions: [LuG75,Zip80b].
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[Gla96] P. Glasserman, Allocating production capacity among multiple products
(Problem)
 /jðxjÞ ¼ cj=cjðxjÞ, c�1
j convex; linear equality (aj ¼ 1); lj > 0, uj ¼ 1
(Origin)
 Choice of base-stock levels and capacity allocations for a minimal total backorder or holding
cost, in an inventory system with several items
(Methodology)
 Simple heuristic decision rules

(Citations)
 Similar analyses for other sequencing problems: [Kle76,Ana89]; optimization algorithms:

[LuG75,Zip80b,IbK88]

(Notes)
 Shows that simple rules exist (such as one that maximizes the time between stockouts) that

behave asymptotically optimally, in the sense that as the number of orders tend to infinity the
allocation policy tend to be optimal.
[KoL98] M.S. Kodialam and H. Luss, Algorithms for separable nonlinear resource allocation problems
(Problem)
 /j strictly increasing; gj strictly decreasing; /0j=g0j strictly increasing and invertible; lj ¼ 0;
uj ¼ 1; Slater CQ
(Origin)
 Same; application mentioned: the service constrained problem

(Methodology)
 Two Lagrange multiplier algorithms: (a) ranking (denoted RANK) à la [LuG75] (and [Tan88]

for a minimax version); and (b) bisection search (denoted EVALUATE) à la [Zip80b] (and
[Lus91] for a minimax version); also presents a pegging algorithm (denoted RELAX) à la
[BiH81], cf. Section 3.2, and a combination with RANK (denoted RELAX/RANK) in which
sorting is first performed, then followed by the division of the problem into two roughly equal
parts, each of which is solved with RELAX and RANK, respectively (cites [Ein81,Lus92] for
this combination)
(Citations)
 Algorithms for the problem:
[ChC58b,WiG69,LuG75,Zip80b,BiH81,Ein81,IbK88,GSAB93,BrS95]; for the minimax
problem: [LuS86,Lus87,Tan88,Lus91,Lus92]
(Notes)
 Extends the three algorithms in a natural manner to the general bounded case, citing
[LuG75,BiH81,GSAB93], but without an analysis. Conclude through numerical experiments
(n ¼ 104) that pegging (RELAX) is best when the multiplier value �l is available explicitly
(followed by RANK and EVALUATE), otherwise EVALUATE is much better; RANK how-
ever suffers much when lacking explicit solutions, since inversions are needed at every iter-
ation. Notes that if RANK is supplied with bisection search then RANK = EVALUATE
follows. Investigates the effect on the algorithms on the relative number of positive variables
at the optimum; RANK is the most sensitive to this number, and fares worse with an inc-
reased number of positive values, since RANK is initialized at zero; RELAX spends the most
time in providing a first Lagrange multiplier estimate.
[MaD89] N. Maculan and G.G. de Paula, Jr, A linear-time median-finding algorithm for projecting a vector
on the simplex of Rn
(Problem)
 /jðxjÞ ¼ 1
2 ðxj � yjÞ

2; linear equality (aj ¼ 1, b ¼ 1); lj ¼ 0, uj ¼ 1

(Methodology)
 Median search

(Citations)
 [AHU74] for the O(n) complexity of median search; [HWC74] for uses of projections onto a

simplex.
[MMP97] N. Maculan, M. Minoux, and G. Plateau, An OðnÞ algorithm for projecting a vector on the inter-
section of a hyperplane and Rn

þ

(Problem)
 /jðxjÞ ¼ 1
2 ðxj � yjÞ

2; linear equality (aj 6¼ 0); lj ¼ 0, uj ¼ 1

(Methodology)
 Two methods: bisection search and median search

(Citations)
 [AHU74] for the Oðn log nÞ and O(n) complexity of sorting and median search, respectively;

[Mic86] for an alternative method (but ‘‘without detailed complexity analysis’’); [MaD89] for
a special case



[MeR00] A. Melman and G. Rabinowitz, An efficient method for a class of continuous nonlinear knapsack

problems
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(Problem)
(Problem)
(Origin)

(Methodology)
(Citations)
/jðxjÞ ¼ /ðxÞ ¼ x½expð�1=xÞ � 1�; linear inequality (aj > 0); lj ¼ 0, uj ¼ 1

(Origin)
 Determining the optimal frequency of waste removal services in chemical production

processes

(Methodology)
 A modified Newton method based on Halley’s method

(Citations)
 Lagrange multiplier methods: [Bec52,CAA57] (‘‘trial-and-error’’), [Zie82,Vid87] (‘‘rigorous

methods’’); Halley’s method: [Tra64]. As in the references [CAA57,Zie82] the authors date
[Bec52] to the year 1942, and probably never gained access to it
(Notes)
 Numerical experiments (n 2 ½500; 3000�).
[MSMJ03] N. Maculan, C.P. Santiago, E.M. Macambira, and M.H.C. Jardim, An OðnÞ algorithm for project-
ing a vector on the intersection of a hyperplane and a box in Rn
(Problem)
 /jðxjÞ ¼ 1
2 ðxj � yjÞ

2; linear equality (aj 6¼ 0)

(Methodology)
 Median search

(Citations)
 Previous algorithms: [MaD89,MMP97,Bru84,Mic86,PaK90]; refers to the use of projections

in subgradient techniques in [HWC74,KeS77]

(Notes)
 Computational results (n 2 ½104; 106�) confirm the linearity of the complexity. States that the

references [Bru84,PaK90] were, during the refereeing process, provided by K.C. Kiwiel; states
that [Bru84] ‘‘does not use the KKT optimality conditions’’, and refers to four contributions
of the paper, out of which the one theoretical result (Lemma 2.1) was not new in 2003.
[Spi02] H. Spiess, Biproportional matrix balancing with upper bounds
(Problem)
 /jðxjÞ ¼ xjðlog xj � rjÞ, linear equality (aj ¼ 1); lj ¼ 0

(Origin)
 An extension of the matrix balancing problem in transportation planning with the addition of

upper bounds; parallel subproblems in coordinate dual ascent method for the problem

(Methodology)
 Ranking

(Citations)
 Matrix balancing problems: [Fur70,Mur77,LaS81]

(Notes)
 Notes that the methodology probably can be extended also to multi-proportional problems

and three-dimensional matrix balancing.
[HaP04] W.W. Hager and S. Park, The gradient projection method with exact line searches
(Problem)
 /jðxjÞ ¼ 1
2 ðxj � ½yj þ apj�Þ

2, a P 0; linear equality (aj > 0); lj ¼ 0, uj ¼ 1

(Origin)
 Exact line search in the gradient projection algorithm, applied to a reformulation of the graph

partition problem as a continuous quadratic programming problem; a parametric projection
problem to find the piecewise linear projections ProjX ½yþ ap� over an interval in the step
length a
(Methodology)
 Explicit enumeration of breakpoints

(Citations)
 Subproblem algorithms: [Bru84,PaK90].
[DaF06] Y.-H. Dai and R. Fletcher, New algorithms for singly linearly constrained quadratic programs sub-
ject to lower and upper bounds
/jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality

Same; also a subproblem in a gradient projection method for a quadratic problem with a non-
diagonal Hessian
Bracketing followed by a secant method
Previous algorithms: [HKL80,Bru84,CaM87,PaK90]



(Notes) Includes a device for checking the consistency of the problem. Extended to the non-convex case.
Numerical experiments on randomly generated problems (n 2 ½104; 106�) against bisection search; the
proposed method wins by a factor of 1.5–4.
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[Lot06] P.A. Lotito, Issues in the implementation of the DSD algorithm for the traffic assignment problem
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj P 0; linear equality (aj ¼ 1, b ¼ 1); lj ¼ 0, uj ¼ 1
(Origin)
 Subproblem for each origin–destination pair in the traffic assignment problem within the
scaled reduced gradient method of [LaP92]
(Methodology)
 A Newton method, wherein q00, at breakpoints where it is not defined, is replaced by the left
(right) derivative of q 0 when q 0 is negative (positive)
(Citations)
 Refers to [HKL80,Bru84,PaK90] for the case when qj > 0 for all j, and to [NiZ92] for a
similar Newton method
(Notes)
 Numerical experiments on median search, randomized median search and the proposed
Newton method (n 2 ½100; 400�); they show similar performance and complexity, but the
Newton method is slightly faster. Has observed in actual iterative use for the traffic assign-
ment problem that the latter is even faster. Vectorized implementations are also shown to
be more easily constructed for the Newton method, due to the avoidance of any binary
search.
3.2. Primal ‘‘pegging’’ algorithms

3.2.1. Introduction

A pegging algorithm for the problem (1) works as follows: We first determine whether the constraint (1a) is
satisfied with equality at an optimal solution, by solving (1) while ignoring the constraint (1a); see the discus-
sion in Section 1. Unless we then have already found an optimal solution, we know that l� > 0 and that the
inequality constraint can be regarded as an equality.

Next, we solve the problem (1) while ignoring the constraints (1b), obtaining a solution �x. Together with �x
we also obtain an estimate �l of the multiplier value l* from the optimality condition. Let
Lð�xÞ :¼ fj ¼ 1; . . . ; n j �xj < ljg; Uð�xÞ :¼ fj ¼ 1; . . . ; n j �xj > ujg

denote the sets of variables that are out of bounds at �x. Let also Jð�lÞ :¼ fj ¼ 1; . . . ; n j lj < �xj < ujg.

In order to simplify the remaining discussion, we consider the simplest form of explicit constraint, namelyPn
j¼1xj ¼ b; the general case is treated analogously.
Calculate the total deficit and excess with respect to the set X at �x as
r :¼
X

j2Lð�xÞ
ðlj � �xjÞ; D :¼

X
j2Uð�xÞ

ð�xj � ujÞ:
Now, if D P r then we set x�j ¼ uj, j 2 Uð�xÞ; otherwise, we set x�j ¼ lj, j 2 Lð�xÞ. We then reduce the problem
by removing the fixed variables, and adjust the right-hand side of the constraint (1b) to reflect the variables
fixed. If any free variables are left, we resolve the problem (1) while ignoring the constraint (1b), otherwise
we have obtained an optimal solution.

The rationale behind this procedure is quite simple and natural: Suppose that D P r holds. We have that
�l ¼ �/0jð�xjÞ for j 2 Jð�lÞ. Let s 2 Uð�xÞ and i 2 f1; . . . ; ng n Uð�xÞ. Since the functions /j are convex, it follows
that
�/0sðusÞP �/0sð�xsÞ ¼ �l ¼ �/0ið�xiÞP �/0iðuiÞ:

Denote by b+ the right-hand side in the following iteration given that D P r holds: bþ :¼ b�

P
j2Uð�xÞ�xj. Also

let ðx̂; l̂Þ denote a pair of relaxed optimal primal–dual solutions in the following iteration. We must have that
l̂ 6 �l, since
X

j2f1;...;ngnUð�xÞ
�xj ¼ b�

X
j2Uð�xÞ

�xj 6 b�
X

j2Uð�xÞ
uj ¼ bþ ¼

X
j2f1;...;ngnUð�xÞ

x̂j;
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hence, for at least one j 2 f1; . . . ; ng n Uð�xÞ we have that x̂j P �xj, and therefore, by the convexity of /j,
l̂ ¼ �/jðx̂jÞ 6 �/jð�xjÞ ¼ �l
follows.
Since in each iteration at least one variable is fixed (or, pegged, as it is sometimes called) to an optimal

value, the algorithm is clearly finite, and in fact its complexity is Oðn2Þ. The most serious disadvantage of
the algorithm may be the requirement that the problem without the variable bounds present must have an
optimal solution. The computational efficiency of this method is also determined by whether or not it is pos-
sible to provide an explicit formula for each �xj in terms of the multiplier; this is of course always possible when
for each j /j is strictly convex quadratic and g is linear with aj 6¼ 0. The methodology on the other hand has the
clear advantage that at least for linear explicit constraints convergence of the method only requires the func-
tions /j to be convex; this is in contrast with the Lagrange multiplier methods to be discussed in Section 3.1,
and which require them to be strictly convex.

Variations of the above theme does exist. One such variation is such that one of the bounds is relaxed in the
constraints (1c), and that the resulting subproblems are solved with a pegging algorithm with respect to the
non-relaxed bounds; hence, a recursive pegging algorithm, which is how we will refer to them. A second var-
iation is that the pegging is based on the feasibility with respect to the constraint (1a) at the projected vector
x̂ :¼ ProjQn

j¼1
X j

�x;
that is, consider letting
x̂j :¼ lj; j 2 Lð�xÞ; x̂j :¼ uj; j 2 Uð�xÞ; x̂j :¼ �xj; j 2 f1; . . . ; ng n ðLð�xÞ [ Uð�xÞÞ:

Then, if gðx̂Þ > 0 we set x�j ¼ lj, j 2 Lðx̂Þ; if gðx̂Þ < 0 we set x�j ¼ uj, j 2 Uð�xÞ; if gðx̂Þ ¼ 0 then x� ¼ x̂. We will
refer to this variation as a projected pegging method.

To summarize the above class of methods, we may say that the methods are explicitly primal, since they in
each step decide on the optimal value of at least one of the variables xj. They are on the other hand also implic-

itly dual, since they in each step update upon the dual variable l towards its optimal value based on the current
values of the primal variables.

Apart from the below references, motivations for the pegging activities can also be found in [Thv60,Boo63,
Boo64,Geo70a,Geo70b,Geo70c,Geo72]. A simple modification of the pegging method is also found in [YaS87].

3.2.2. Annotated bibliography
[San71] L. Sanathanan, On an allocation problem with multistage constraints
(Problem)
 General: /j 2 C2, /00j > 0; linear equality (aj 6¼ 0); lj ¼ �1, uj ¼ 1 possible. Application:
/jðxjÞ ¼ cj=xj, cj > 0
(Origin)
 Same. Application to optimal allocation in stratified sampling subject to restrictions on strata
estimates, capital budgeting and multistage sampling
(Methodology)
 Recursive pegging algorithm

(Citations)
 [Sri63,Kis65]

(Notes)
 Numerical experiments (n ¼ 6); same problem as in [Sri63]. Presents a Lagrange multiplier

method à la [Sri63] for the problem; cf. Section 3.1. The purpose of the paper is to introduce
pegging as an alternative approach, with the advantage that pegging can be extended to
certain multi-stage problems.
[LuG75] H. Luss and S.K. Gupta, Allocation of effort resources among competing activities
(Problem)
 /j strictly convex and increasing, linear inequality (aj ¼ 1)

(Origin)
 Applications: allocating an advertising budget among n sales territories, portfolio selection,

and budgeting

(Methodology)
 Recursive pegging algorithm

(Notes)
 For the submodels, the algorithm is a Lagrange multiplier method which utilizes sorting of

primal derivatives (‘‘ranking’’), hence the strong requirements on /j; cf. Section 3.1.



[BiH77] G.R. Bitran and A.C. Hax, On the design of hierarchical production planning systems
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(Problem)
 Family disaggregation production planning model; /jðxjÞ ¼ cj=xj, cj > 0; linear equality
(aj ¼ 1)
(Origin)
 Hierarchical production planning problem

(Methodology)
 Pegging

(Citations)
 [BiH79]

(Notes)
 Small numerical tests. Extends the algorithm to the inequality case.
[BiH79] G.R. Bitran and A.C. Hax, On the solution of convex knapsack problems with bounded variables
(Problem)
 Linear equality (aj ¼ 1)

(Origin)
 Same

(Methodology)
 Pegging

(Citations)
 [ChC58b,WiG69,LuG75,BiH77]

(Notes)
 Numerical experiments (n 2 ½50; 200�). Proves that if r > D in some iteration then the value

of �l will decrease in the next iteration.
[BiH81] G.R. Bitran and A.C. Hax, Disaggregation and resource-allocation using convex knapsack-problems
with bounded variables
(Problem)
 Linear equality (aj ¼ 1); lj ¼ �1 and uj ¼ 1 possible

(Origin)
 Production planning and scheduling, allocation of financial resources, inventory control

(Methodology)
 Pegging. Algorithm referred to as BRELAX2 in [IbK88, Section 2.3]

(Citations)
 Applications: [ChC58b,WiG69,HWC74,LuG75,BiH77,BHH81]; algorithms: [ChC58b] (‘‘con-

vex programming arguments’’), [WiG69] (dynamic programming), [LuG75] (iterative algo-
rithm), [Zip80b] (extension of the algorithm in [LuG75])
(Notes)
 Similar to [BiH79].
[Zip80b] P.H. Zipkin, Simple ranking methods for allocation of one resource
(Problem)
 /j strictly convex, linear equality (aj ¼ 1); lj ¼ 0

(Methodology)
 For the general problem: recursive pegging, citing [LuG75]. Algorithm referred to as BRELAX1

in [IbK88, Section 2.3]. For the singly bounded problems (uj ¼ 1), cites the Lagrange multiplier
method from [LuG75], and also presents a modification, likewise based on the ranking of primal
derivatives; cf. Section 3.1.
(Citations)
 Applications: optimal search effort [ChC58b], marketing [LuG75], capital budgeting [Han68,
p. 81], production [BiH77], aggregation errors [Zip80a], portfolio selection [Jud75,EGP76],
reliability [Bod69], health care [Fet73], and multicommodity flows [HWC74]. Algorithms:
cites the Lagrange multiplier method in [LuG75] as subsuming [ChC58b,WiG69]; discusses
also the pegging algorithm from [BiH77] (wrongly supposing that only one variable can be
pegged at any given iteration) and the Lagrange multiplier methods from
[Bod69,HWC74,Jud75]. Further citations:
[Koo57,deG61,Kar62,Eve63,Geo70a,Geo70b,GrP70]
(Notes)
 Perhaps the first survey on algorithms for the problem, providing a unified presentation of
some previous work. For the singly bounded submodels, the algorithm is a Lagrange mul-
tiplier method, hence the strong requirements on /j; cf. Section 3.1.
[Mic86] C. Michelot, A finite algorithm for finding the projection of a point onto the canonical simplex
of Rn
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(Problem)
 /jðxjÞ ¼ 1
2 ðxj � yjÞ

2; linear equality (aj ¼ 1, b ¼ 1); lj ¼ 0, uj ¼ 1

(Methodology)
 Pegging

(Citations)
 Projections onto general polyhedra: [Wol74,Wol76,BGR78]

(Notes)
 Extends the algorithm to a more general setting (aj > 0).
[IbK88] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic Approaches
(Problem)
 Linear equality ðaj ¼ 1Þ

(Origin)
 Resource allocation problem from several areas

(Methodology)
 Pegging (the algorithm BRELAX2 from [BiH81]) or recursive pegging (first converting the set

to xj to ½0; uj�, then utilizing the Lagrange multiplier algorithm BRELAX1 from [Zip80b]);
pegging (the algorithm from [BiH81], then denoted RELAX) for the special case of X j ¼
½0; uj�
(Citations)
 Applications: optimal search effort ([Koo53,Koo56a,Koo56b,Koo57,ChC58b,Kar58,Kar62],
optimal sample allocation in stratified sampling [Ney34,Sri63], optimal portfolio selection
[Mar52,Mar59,Sha63,Sto73,Jud75,EGP76,Zip80b], production planning [BiH77,BHH81,
BiH81,Zie82], resource distribution [FeZ83,FeZ84], mass advertising [Kot71]; here, /j is ‘‘S-
shaped’’), marketing effort allocation [Lus73], reliability problems [Bod69], bidding for oil
and gas ventures [FeG86], allocation of people to evacuation routes [Fra78], subproblems
in subgradient algorithms [HWC74], the apportionment problem [BaY82]. Algorithms for
continuous problems: pegging algorithms [Zip80b,BiH81], Lagrange multiplier methods
[LuG75,HKL80,OhK80,Zip80b,Was81,Bru84], and variations [Ein81]
(Notes)
 Comprehensive overview of the linearly constrained allocation problem with extensions to
minimax/maximin, lexicographic minimization, submodular and integrality constraints, and
more. Notes that the RELAX algorithms can be extended to the case of non-differentiable
functions /j.
[Eu91] J.H. Eu, The sampling resource allocation problem
(Problem)
 /jðxjÞ ¼ cj=xj, cj > 0; linear equality

(Origin)
 Real-time monitoring to detect errors of digital signals

(Methodology)
 Pegging (the algorithm from [BiH81])

(Citations)
 Application origin [Eu90]; sampling techniques [Coc77]; pegging methods

[LuG75,Zip80b,BiH81]

(Notes)
 Numerical experiment (n ¼ 4).
[Ven91] J.A. Ventura, Computational development of a Lagrangian dual approach for quadratic networks
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality
(Origin)
 Line search subproblem in the Polak–Ribière [PoR69] dual ascent method for the quadratic
transportation problem
(Methodology)
 Pegging (extends the algorithm from [BiH81] to allow for non-unit coefficients in the linear
equality constraint); also discusses two Lagrange multiplier methods based on bisection search
(the method from [HKL80] and a random search method); cf. Section 3.1
(Citations)
 Pegging methods [BiH81], Lagrange multiplier methods for network flow problems
[BaK80,CoP82,OhK84,CDZ86,BeE87,BHT87,LiP87]
(Notes)
 Numerical experiments (n 2 ½50; 500�) on NETGEN generated networks, using Merge sort
[Oðn log nÞ] for the sorting; pegging wins, followed by random search and the method from
[HKL80].
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[RJL92] A.G. Robinson, N. Jiang, and C.S. Lemke, On the continuous quadratic knapsack problem
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality (aj > 0); transforms the problem before solution to

/jðxjÞ ¼ 1
2 x2

j

(Methodology)
 Pegging (perhaps the first time the term is mentioned)

(Citations)
 Applications: multicommodity flows [AHKL80], traffic equilibrium [DaS69], quadratic trans-

portation [OhK84], matrix balancing in regional and national economics [CDZ86,NKR90,
NaR92], convex quadratic programming [CDZ86], portfolio selection [Jud75,Pan80]; refer-
ences to other pegging algorithms ([Mic86], pointed out by a referee), and Lagrange multiplier
methods [DaS69,HWC74,HKL80,Bru84,CDZ86]
(Notes)
 Numerical experiments (n 2 ½100; 4000�) against three Lagrange multiplier algorithms (the
dual line search methods from [HKL80,Bru84,PaK90]) and a rough dual Newton method, cf.
Section 3.1; the pegging algorithm wins against all the three Lagrange multiplier methods and
is comparable to the Newton method.
[KoL98] M.S. Kodialam and H. Luss, Algorithms for separable nonlinear resource allocation problems
(Problem)
 /j strictly increasing; gj strictly decreasing; /0j=g0j strictly increasing and invertible; lj ¼ 0;
uj ¼ 1; Slater CQ
(Origin)
 Same; application mentioned: the service constrained problem

(Methodology)
 Pegging (denoted RELAX) à la [BiH81]; also presents two Lagrange multiplier algorithms

(denoted RANK and EVALUATE), cf. Section 3.1, and an algorithm combination (denoted
RELAX/RANK) in which sorting is first performed, then followed by the division of the
problem into two roughly equal parts, each of which is solved with RELAX and RANK,
respectively (cites [Ein81,Lus92] for this combination)
(Citations)
 Algorithms for the problem: [ChC58b,WiG69,LuG75,Zip80b,BiH81,Ein81,IbK88,GSAB93,
BrS95]; for the minimax problem: [LuS86,Lus87,Tan88,Lus91,Lus92]
(Notes)
 Also extends the three algorithms in a natural manner to the general bounded case, citing
[LuG75,BiH81,GSAB93], but without an analysis. Conclude through numerical experiments
(n ¼ 10; 000) that pegging (RELAX) is best when the multiplier value �l is available explicitly
(followed by RANK and EVALUATE), otherwise EVALUATE is much better; RANK
however suffers much when lacking explicit solutions, since inversions are needed at every
iteration. Notes that if RANK is supplied with bisection search then RANK = EVALUATE
follows. Investigates the effect on the algorithms on the relative number of positive variables
at the optimum; RANK is the most sensitive to this number, and fares worse with an inc-
reased number of positive values, since RANK is initialized at zero; RELAX spends the most
time in providing a first Lagrange multiplier estimate.
[BSS96] K.M. Bretthauer, B. Shetty, and S. Syam, A projection method for the integer quadratic knapsack
problem
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear equality (aj > 0)
(Origin)
 Same problem with integral requirements on x, solved by means of continuous relaxation and
branch-and-bound
(Methodology)
 Pegging

(Citations)
 Lagrangian multiplier method for the problem: [BSS95]; recent projection method: [RJL92]

which is modified in the present paper; other methods: [HKL80,PaK90,ShM90,NiZ92]

(Notes)
 Provides a modified version of the method of [RJL92] through which an a priori problem

conversion becomes unnecessary. Numerical example (n ¼ 5). Compares two implementations
for the original problem, using the Lagrange multiplier method from [HKL80] and the mod-
ified pegging algorithm from [RJL92] (n 2 ½50; 100�); pegging wins in CPU time by a factor of
3–4.
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[BrS97] K.M. Bretthauer and B. Shetty, Quadratic resource allocation with generalized upper bounds
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear inequality (aj > 0)
(Origin)
 Quadratic resource allocation with generalized upper bounds solved through Lagrangian
relaxation
(Methodology)
 Pegging

(Citations)
 Bisection search [HKL80]; pegging [RJL92]; other methods for the problem [LuG75,BiH81,

FeZ83,MSM83,Bru84,DMS88,IbK88,PaK90,ShM90,NiZ92,BKP93]; an O(n) algorithm for a
more general problem [MeT93]
(Notes)
 Provides a modified version of the pegging algorithm from [RJL92] through which an a priori
problem conversion becomes unnecessary. Numerical experiments (n 2 ½100; 1500�) on easy
and hard problems (related to the number of variables that are not on any of the bounds at x*);
compares bisection search, pegging, and the general-purpose GRG algorithm from [SmL92];
pegging wins marginally over bisection search, while both are reported to be more than 4000
times faster than GRG.
[BRS99] K.M. Bretthauer, A. Ross, and B. Shetty, Nonlinear integer programming for optimal allocation in
stratified sampling
(Problem)
 /jðxjÞ ¼ cj=xj, cj > 0; linear inequality (aj > 0)

(Origin)
 Same problem with integral requirements on x, solved by means of continuous relaxation and

branch-and-bound

(Methodology)
 Pegging

(Citations)
 Stratified sampling [Coc77]; pegging algorithms for the continuous relaxation [BiH81,RJL92];

Lagrange multiplier methods [HKL80,PaK90,NiZ92,BrS95]; other studies of the problem
[Sri63,MSM86,IbK88]
(Notes)
 Notes that a dual line search is also possible to use, but refers to it as an infinite procedure.
Numerical experiments [n 2 ½5; 200� (easy problems), n 2 ½5; 20� (hard problems), n 2 ½75; 200�
(easy problems)]; compares pegging and a Lagrange multiplier method (given by an uniden-
tified generic nonlinear solver taken from [PFTV90]) together with a general B & B code, as
well as a problem conversion/linearization into a linear 0/1 problem from [MSM86,Hoc95]; on
easy problems the latter wins over pegging by a great margin, and the Lagrange multiplier
method is a factor of nearly 10 slower; on the hard problems the conversion method does
not converge within time limits on the largest instances, while pegging wins over the Lagrange
multiplier method with a factor of about 6.
[BrS02a] K.M. Bretthauer and B. Shetty, A pegging algorithm for the nonlinear resource allocation
problem
(Problem)
 /j 2 C2; gj 2 C2. Case I: /j increasing, gj decreasing, �xj increasing in �l. Case II: /j

decreasing, gj increasing, �xj decreasing in �l

(Origin)
 Discrete extension of same problem, solved through continuous relaxation and

branch-and-bound P P

(Methodology)
 Pegging. Case I: if j2L½gjðljÞ � gjð�xjÞ� > j2U ½gjð�xjÞ � gjðujÞ� then peg wrt. U, otherwise

peg wrt. L. Case II: if
P

j2L½gjðljÞ � gjð�xjÞ� <
P

j2U ½gjð�xjÞ � gjðujÞ� then peg wrt. U,
otherwise peg wrt. L.
(Citations)
 Applications of the original problem: [Coc63,GeK77,MSM83,HaC84,IbK88,BSSW94]; algo-
rithms: [HKL80,BiH81,Bru84,IbK88,PaK90,ShM90,NiZ92,RJL92,BKP93,BrS95,BSS95,
BSS96,BrS97,KoL98] P P
(Notes)
 Show that in both cases I and II j2L½gjðljÞ � gjð�xjÞ� > j2U ½gjð�xjÞ � gjðujÞ� implies that the
value of �l will increase in the next iteration. Discusses the differences between having access to
�x explicitly (such as in the strictly convex quadratic minimization case with a linear
constraint) or not.
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(Problem)
 Same as in [BrS02a]

(Origin)
 Discrete extension of same problem, solved through continuous relaxation and branch-and-

bound

(Methodology)
 Same as in [BrS02a]

(Citations)
 Applications: financial [MSM83], production and inventory management [Zie82,VeK88,

MaK93,BSSW94], stratified sampling [Coc63], optimal design of queueing network models in
manufacturing [BiT89], and computer systems [GeK77]; algorithms: [Zip80b,BiH81,FeZ83,
Bru84,IbK88,PaK90,ShM90,NiZ92,RJL92,BrS95,KoL98,BrS02a]. Cites also algorithms for
the integer problem and algorithms for the non-convex continuous problem
(Notes)
 Survey paper on applications and algorithms.
[BSS03] K.M. Bretthauer, B. Shetty, and S. Syam, A specially structured nonlinear integer resource allocation
problem
(Problem)
 /jðxjÞ ¼ cj=xj þ bjxj, cj > 0, bj > 0, or /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear inequality (aj > 0)
(Origin)
 Capacity planning problems in health care and production planning and portfolio
optimization problems with additional GUB constraints (and with/without integer variable
requirements), solved through Lagrangian relaxation of the coupling resource constraints and
a dual line search (and branch-and-bound)
(Methodology)
 Pegging

(Citations)
 Previous pegging algorithms: [BiH81,IbK88,RJL92,KoL98,BrS02a]

(Notes)
 Numerical experiments on randomly generated problems (n 2 ½10; 5000�).
[Ste00] S.M. Stefanov, On the implementation of stochastic quasigradient methods to some facility location
problems
(Problem)
 /jðxjÞ ¼ 1
2 ðxj � yjÞ

2; linear (in)equality (aj > 0)

(Origin)
 Projection subproblem in a stochastic quasigradient method

(Methodology)
 Projected pegging

(Citations)
 [RoW88,Ste01a]

(Notes)
 States that the algorithm has an Oðn2Þ complexity. Small numerical examples (n 2 f5; 6g)
[Ste01a] S.M. Stefanov, Convex separable minimization subject to bounded variables
(Problem)
 /j 2 C2, strictly convex; gj 2 C2, g0j > 0 and bounded away from zero; general constraint as
well as linear (in)equality (aj > 0); lj ¼ �1, uj ¼ 1 possible
(Methodology)
 Projected pegging

(Citations)
 Applications: [ChC58b,HWC74,LuG75,Zip80b,BiH81,RoW88,Ste00]; algorithms: [LuG75,

HKL80,Zip80b,BiH81,Bru84,Mic86,PaK90,MoV91,Ste00]

(Notes)
 Numerical experiments (n 2 ½1200; 1500�). Does not present any relationships between the

projected pegging method proposed and the pegging methods cited.
[Ste01b] S.M. Stefanov, Separable Programming: Theory and Methods
(Problem)
 /j 2 C2, strictly convex; gj 2 C2, g0j > 0 and bounded away from zero; general constraint as
well as linear (in)equality (aj > 0); lj ¼ �1, uj ¼ 1 possible
(Origin)
 Same; also applied to the problem from [Ste00]

(Methodology)
 Projected pegging from [Ste01a]

(Citations)
 Algorithms: [Dun77,McC79,CDZ86,LiP87], in addition to those in [Ste01a]

(Notes)
 Text similar to that of [Ste01a].
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[Ste04a] S.M. Stefanov, Convex quadratic minimization subject to a linear constraint and box constraints
(Problem)
 /jðxjÞ ¼
qj

2 x2
j � rjxj, qj > 0; linear (in)equality (aj > 0); lj ¼ �1, uj ¼ 1 possible
(Methodology)
 Projected pegging

(Citations)
 Algorithms:

[ChC58b,HWC74,LuG75,McC79,HKL80,Bru84,DFL86,Mic86,RoW88,PaK90,RJL92,Ste00,
Ste01a,Ste01b,Ste04b]
(Notes)
 Numerical experiments (n 2 ½1200; 1500�).
[Ste04b] S.M. Stefanov, Polynomial algorithms for projecting a point onto a region defined by a linear con-
straint and box constraints
(Problem)
 /jðxjÞ ¼ 1
2 ðxj � yjÞ

2; linear (in)equality (aj > 0); lj ¼ �1, uj ¼ 1 possible

(Methodology)
 Projected pegging

(Citations)
 Algorithms: [ChC58b,HWC74,LuG75,KIM79,BiH81,Bru84,Mic86,RoW88,Ste00,Ste01a,

Ste01b,Ste02,Zip80b].
4. Analysis, comments and future research

We summarize the above bibliographies of the two main algorithm approaches for the problem (1), by list-
ing the—in our opinion—main contributions, sorted in chronological order:

[CAA57] The first algorithm
[ChC58b] The first practical and convergent algorithm
[ChC58b] The first explicit use of breakpoints in a Lagrange multiplier algorithm
[Sri63] The first bisection algorithm
[Sri63] The first algorithm for a general form of /j

[Bod69] The first algorithm for the parametric problem (over the values of the RHS b)
[DaS69] The first numerical experiment with n > 10
[San71] The first (recursive) pegging algorithm
[San71] The first article to discuss both pegging and Lagrange multiplier algorithms
[LuG75] The first article to discuss the value of having an explicit formula for xðlÞ
[BiH77] The first true pegging algorithm, together with convergence theory
[HKL80] The first complexity analysis of a Lagrange multiplier algorithm
[Zip80b] The first survey on algorithms
[Zip80b] The first discussion on the reoptimization of the problem for small changes in the data; utilizes the

previous value of l*

[Ein81] The first numerical solution of the Lagrangian minimization problem
[Zie82] The first Newton-type algorithm for the problem
[FeZ83] The first mention of reoptimization of the problem through the re-ordering of the list of

breakpoints
[CDZ86] The first serious computational study
[CaM87] The first discussion on the value of solving the Lagrangian dual problem even when the original

problem is inconsistent
[IbK88] The first comprehensive survey
[IbK88] The first collected treatise on extensions of the problem (to integer variables, maximin problems,

non-differentiable functions /j, etc.)
[RoW88] The first algorithm for a general form of gj

[Ven89] The first numerical comparison between pegging and Lagrange multiplier algorithms
[Ven89] The first hybrid pegging/Lagrange multiplier algorithm
[NiZ92] The first theoretical analysis of a Newton algorithm for the Lagrangian dual problem
[NiZ92] The first (massively) parallel implementation
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[KoL98] The most complete computational study
[KoL98] The first pegging algorithm for the general problem
[BrS02a] The first pegging algorithm analyzed for the general problem

In Table 1 we summarize the appearance of articles on the two main algorithmic approaches, among the
articles presented in the above bibliographies.

It is apparent from the above list and Table 1 that most of the development of Lagrange multiplier algo-
rithms occurred in the 1980s and the early 1990s while the development of pegging algorithms has continued
to increase over the decades, albeit at a smaller scale. Notice that noone actually has yet proposed a Lagrange
multiplier algorithm for the general problem (1), although it is of course straightforward.

The development of numerical experiments for the problem (1) is illustrated in Table 2, where we cite the
size of the largest test problem reported during each decade.

Based on the above list of articles it appears that a short story on how to solve the problem (1) goes as
follows: to utilize a pegging algorithm, unless one has access to a near-optimal value of the Lagrange multi-
plier l or x(l) is not available explicitly, whence one should instead use a Lagrange multiplier algorithm. Also,
on the latter approach, it is evident that a sorting of the breakpoints should be avoided, unless one needs to
solve several similar problems. And: one should not use the ranking approach but instead use bisection or a
Newton-like algorithm.

There are some interesting questions and comments that are provoked by reading these articles, and which
conclude the paper:

1. Recall that two general convex quadratic programming algorithms reduce to instances of Lagrange multi-
plier algorithms when considering strictly convex quadratic programming instances of the general problem
(1): parametric principal pivoting [CDZ86] reduces to ordinal statistics (or, median search), cf. [RJL92], and
the complementary pivot algorithm from [Pan80] reduces to bisection search, cf. [DFL86]. Can more gen-
eral statements be made regarding the connection between quadratic programming algorithms and
Lagrange multiplier algorithms?

2. In the above references, no Newton-type algorithm has been analyzed theoretically for a non-quadratic
problem; such an analysis is called for, given the success the algorithms have had in numerical experiments.

3. Is it possible to say in general which of the two main approaches is the best to use when solving a certain
extension of the problem, such as, say, to integer variables (as in [Gre70,IbK88])?

4. As we have remarked before presenting the bibliographies for each of the two main algorithm classes, there
is an issue regarding the solvability of the relaxed problems. It appears that noone has yet proposed a way
around that problem, but there is a simple approach for dealing with it: Suppose we apply a proximal point
algorithm (e.g., [Roc76a,Roc76b]) for the problem, and use either pegging or a Lagrange multiplier algo-
rithm in each iteration. In the proximal point algorithm we introduce an additive term for each index j into
the objective, of the form

cs
j

2
ðxj � xs

jÞ
2, where cs

j > 0 and xs
j is the value of the variable xj at iteration s of the

proximal point algorithm. This addition means that solvability of the relaxed problem is always guaran-
Table 2
Largest instances solved for each algorithm class through the decades

Decade 50s 60s 70s 80s 90s 00s

Lagrange multiplier algorithms 2 60 12 200 104 106

Primal ‘‘pegging’’ algorithms – – 200 200 104 5000

Table 1
Number of articles on each algorithm class through the decades

Decade 50s 60s 70s 80s 90s 00s
P

Lagrange multiplier algorithms 2 4 5 21 19 6 57
Primal ‘‘pegging’’ algorithms – – 4 4 6 9 23

Note that the three papers [Vid84,Vid86,Vid87] on Lagrange multiplier methods are only counted once.
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teed, and moreover if the problem has (non-strictly convex) quadratic objective terms and the constraint is
linear then the relaxed problem has an explicit optimal solution. A few iterations of the proximal point
algorithm might produce better solutions than a general tool for solving non-strictly convex programs.

5. In all the above references the only comparison with a ‘‘standard’’ NLP solver has been performed in
[BrS97]; the conclusion is that pegging beats a GRG code with a huge factor. This does of course not con-
clude the debate of whether the best specialized algorithms discussed in this paper are superior to every gen-
erally applicable algorithm in nonlinear programming that can utilize the special sparsity of the problem.
Numerical tests are planned in the near future to contribute to an answer to this question.
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[MoV91] J.J. Moré, S.A. Vavasis, On the solution of concave knapsack problems, Mathematical Programming 49 (1991) 397–411.
[MoS54] T. Motzkin, I.J. Schoenberg, The relaxation method for linear inequalities, Canadian Journal of Mathematics 6 (1954) 393–

404.
[MuV91] J.M. Mulvey, H. Vladimirou, Solving multistage stochastic networks: An application of scenario aggregation, Networks 21

(1991) 619–643.
[Mun68] D. Munby (Ed.), Transport: Selected Readings, Penguin Books, Harmondsworth, Middlesex, England, 1968.
[Mur77] J.D. Murchland, The multiproportional problem, Manuscript JDM-263, Draft 1, Transport Studies Group, University

College London, London, UK, 1977.
[Nag87] A. Nagurney, An algorithm for the classical spatial price equilibrium problem, Operations Research Letters 6 (1987) 93–98.



44 M. Patriksson / European Journal of Operational Research 185 (2008) 1–46
[NEK90] A. Nagurney, A. Eyedeland, D.-S. Kim, Computation of large scale constrained matrix problems: The splitting equilibration
algorithm, in: Proceedings of the 1990 ACM/IEEE conference on Supercomputing, New York, November 12–16, 1990, IEEE
Computer Society, New York, NY, 1990, pp. 214–223.

[NKR90] A. Nagurney, D.S. Kim, A.G. Robinson, Serial and parallel equilibration of large-scale constrained matrix problems with
application to the social and economic sciences, The International Journal of Supercomputer Applications 4 (1990) 49–71.

[NaR92] A. Nagurney, A.G. Robinson, Algorithms for quadratic constrained matrix problems, Mathematical and Computer
Modelling 16 (1992) 53–65.

[Ney34] J. Neyman, On the two different aspects of the representative method: the method of stratified sampling and the method of
purposive selection, Journal of the Royal Statistical Society 97 (1934) 558–606.

[NiZ92] S.S. Nielsen, S.A. Zenios, Massively parallel algorithms for singly constrained convex programs, ORSA Journal on
Computing 4 (1992) 166–181.

[NiZ93] S.S. Nielsen, S.A. Zenios, A massively parallel algorithm for nonlinear stochastic network problems, Operations Research 41
(1993) 319–337.

[OhY90] H. Ohtera, S. Yamada, Optimal allocation & control problems with substitutions, IEEE Transactions on Reliability 39
(1990) 171–176.

[OhK80] A. Ohuchi, I. Kaji, Algorithms for optimal allocation problems having quadratic objective function, Journal of the
Operations Research Society of Japan 23 (1980) 64–80.

[OhK81] A. Ohuchi, I. Kaji, An algorithm for the Hitchcock transportation problems with quadratic cost functions, Journal of the
Operations Research Society of Japan 24 (1981) 170–182.

[OhK84] A. Ohuchi, I. Kaji, Lagrangian dual coordinatewise maximization algorithm for network transportation problems with
quadratic costs, Networks 14 (1984) 515–530.

[Oma67] F.H. Omar, The projection of input–output coefficients with application to the United Kingdom, Ph.D. thesis, University of
Nottingham, Nottingham, UK, 1967.

[OOK86] T. Oohori, A. Ohuchi, I. Kaji, Convergence proof of coordinatewise minimization algorithm for convex programming
problem with upper and lower bounded constraints, Journal of the Operations Research Society of Japan 29 (1986) 320–337
(in Japanese).

[ORC59] Operations Research Center, M.I.T., Notes on Operations Research 1959, The Technology Press, Cambridge, MA, 1959.
[Osb60] E.E. Osborne, On pre-conditioning of matrices, Journal of the Association of Computing Machinery 7 (1960) 338–345.
[Pan80] J.-S. Pang, A new and efficient algorithm for a class of portfolio selection problems, Operations Research 28 (1980) 754–767.
[Pan84] J.-S. Pang, On the convergence of dual ascent methods for large-scale linearly constrained optimization problems, technical

report, School of Management, University of Texas at Dallas, Richardson, TX, 1984.
[PaK90] P. Pardalos, N. Kovoor, An algorithm for a singly constrained class of quadratic programs subject to upper and lower

bounds, Mathematical Programming 46 (1990) 321–328.
[PYH91] P. Pardalos, Y. Ye, C.-G. Han, Algorithms for the solution of quadratic knapsack problems, Linear Algebra and Its

Applications 152 (1991) 69–91.
[Pat94] M. Patriksson, The Traffic Assignment Problem—Models and MethodsTopics in Transportation, VSP BV, Utrecht, The

Netherlands, 1994.
[Pig20] A.C. Pigou, The Economics of Welfare, Macmillan & Co., London, UK, 1920.
[Pig24] A.C. Pigou, The Economics of Welfare, second ed., Macmillan & Co., London, UK, 1924.
[Pig29] A.C. Pigou, The Economics of Welfare, third ed., Macmillan & Co., London, UK, 1929.
[Pig46] A.C. Pigou, The Economics of Welfare, fourth ed., Macmillan & Co., London, UK, 1946.
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