
Test Examples for Nonlinear Programming Codes

- All Problems from the Hock-Schittkowski-Collection -

Address: Prof. Klaus Schittkowski
Department of Computer Science
University of Bayreuth
D - 95440 Bayreuth

Phone: +49 921 557750
E-mail: klaus.schittkowski@uni-bayreuth.de
Web: http://www.klaus-schittkowski.de
Date: 12.2.2009

Abstract

The test problems of the Hock and Schittkowski-collection1 became quite popular
in the past for developing and testing nonlinear programming codes. Since this first
collection is out of print, we present a short review and the original scanned test
problem documentation. We provide optimal solutions, program organization, and
some numerical test results.

1Test Examples for Nonlinear Programming Codes, Willi Hock, Klaus Schittkowski, Springer, Lecture
Notes in Economics and Mathematical Systems, Vol. 187

1

1 Introduction

A couple of years ago, the author published two test problem collections for testing nonlin-
ear programming codes, see Hock and Schittkowski [4] and Schittkowski [9]. The problems
are widely used and contained also in other test problem collections, for example in the
Cute library of Bongartz et al. [1], available through the URL

http://www.cse.clrc.ac.uk/activity/cute

The test problem collection of Spellucci [12] is available through the ftp site

ftp://ftp.mathematik.tu-darmstadt.de/pub/department/software/opti/

confer also the benchmark test page maintained by Mittelmann

http://plato.la.asu.edu/bench.html

In addition, AMPL versions of all test problems of the two collections are available through
the links

http://www.sor.princeton.edu/~rvdb/ampl/nlmodels/hs/index.html

and

http://www.sor.princeton.edu/~rvdb/ampl/nlmodels/s/index.html

see also Fourer et al. [3] for more details about AMPL. The original Fortran implementa-
tion can be downloaded from

http://www.old.uni-bayreuth.de/departments/math/~kschittkowski/downloads.htm

When developing a new version of a sequential quadratic programming algorithm,
the test examples were investigated again and used for some numerical tests, see Schitt-
kowski [11]. The purpose of the paper is to outline the usage of the codes and to make
them available for public usage.

We consider the general optimization problem, to minimize an objective function f(x)
under nonlinear equality and inequality constraints,

x ∈ IRn :

min f(x)

aT
j x + βj ≥ 0 , j = 1, . . . , m11,

gj(x) ≥ 0 , j = m11 + 1, . . . , m1,

aT
j x + βj = 0 , j = m1 + 1, . . . , m21,

gj(x) = 0 , j = m21 + 1, . . . , m,

xl ≤ x ≤ xu

(1)

where x is an n-dimensional parameter vector. It is supposed that the first m11 inequality
constraints and that the first m21 − m1 equations are linear, whereas the remaining ones
are nonlinear. To facilitate the notation, we set gj(x) = aT

j x + βj for j = 1, . . ., m11 and

2

j = m1 + 1, . . ., m21. Objective function and constraints are supposed to be continuously
differentiable on the whole IRn.

The test problems have been used in the past to develop the nonlinear programming
code NLPQL [8], a Fortran implementation of a sequential quadratic programming (SQP)
algorithm. The design of the numerical algorithm is founded on extensive comparative
numerical tests of Schittkowski [7], Schittkowski et al. [10], and Hock, Schittkowski [5]. To
complete the numerical tests, an additional random test problem generator was developed
for a major comparative study, see [7]. More than 100 test problems based on a finite
element formulation are collected for the comparative evaluation in Schittkowski et al. [10].

All these efforts indicate the importance of a qualified set of test examples for debug-
ging, validation, performance evaluation, and quantitative numerical comparisons with
alternative codes. Although not collected in a very systematically way, the test problems
represent all numerical difficulties we observe in practice, for example

1. badly scaled objective and constraint functions,

2. badly scaled variables,

3. non-smooth model functions,

4. ill-conditioned optimization problems,

5. non-regular solutions at points where the constraint qualification is not satisfied,

6. different local solutions,

7. infinitely many solutions.

Academic test problems allow either an analytical or a numerical investigation of all
interesting properties, with nearly no or only limited efforts. On the other hand, nonlinear
programming problems based on a real-life background are often too complex to serve as
test problems, are often not available, are not programmed in a standard form as required
for massive tests, or contain round-off and truncation errors, in particular if secondary
iterative numerical algorithms are included to compute function and gradient values. The
latter argument is crucial, since most non-trivial application problems generate numerical
errors in the one or other form. Often gradients are only available by forward differences.
However, we can use the academic test problems also in this situation, by adding randomly
generated errors and by approximating derivatives numerically. A few corresponding test
results are found in Schittkowski [11].

It is important that all test examples come with an optimal solution obtained by
analytical or numerical experimentation investigation. Most examples are non-convex,
but we hope that at least in most cases, we are able to provide a global solution. For most
test problems, analytical gradients are available. However, we cannot give a guarantee
that they are correct and recommend usage of numerical differentiation.

The Fortran source codes of all test problems are made available through

3

http://www.uni-bayreuth.de/departments/math/~kschittkowski/home.htm

The usage of the subroutines is documented in Section 2 together with a detailed example.
A driver program is listed that shows how a nonlinear programming code, in this case
NLPQLP, would evaluate function and gradient values. The files that are provided by
the author, are listed in Section 3 together with a description of the generated output. A
main program that executes all 115 test examples within a loop and solves them by the
code NLPQLP, see Schittkowski [11], is attached. The code contains also an evaluation of
numerical results based on a decision, whether the result of a test run is considered to be
a successful one or not. Some numerical tests are included in Section 4 which are helpful
for comparing own implementations. An appendix contains a list of all individual results
including performance data, i.e. number of function calls, number of iterations, errors in
objective function, and constraint violations.

Since the first test problem collection [4] is out of print, an appendix is attached which
contains a detailed documentation of all problems in the original form.

2 Usage of the Fortran Subroutines

A test problem is set up by

CALL TPno(MODE)

where no stands for any of the available test problem numbers. This section describes
the organization of the FORTRAN subroutines and informs the user how to execute the
test problems. Since it is assumed that at least a subset of the problems is used within a
series of test runs for different optimization programs, the problems are coded in a very
flexible manner. For example, it is possible to compute an arbitrary subset of restriction
values. The parameter MODE describes the five possible operations of the subroutine.

MODE=1: The driving program will be provided with all information necessary to
initialize an optimization program for the solution of the test problem,
i.e. dimension, type and number of constraints, upper and lower bounds,
starting point, derivatives of linear constraints, and, in particular, the
exact or computed optimal solution.

MODE=2: The objective function f(x) is computed at a current iterate x.

MODE=3: The gradient ∇f(x) of the objective function will be computed.

MODE=4: A predetermined subset of constraints g1(x), . . ., gm(x) is evaluated at
the actual iterate x.

MODE=5: The gradients of a predetermined subset of nonlinear constraints are com-
puted, i.e. of ∇g1(x), . . ., ∇gm(x).

4

The information on the test problem is delivered in the following common-blocks which
have to be defined in the driving program with appropriate array dimensions:

COMMON/L1/N,NILI,NINL,NELI,NENL: A call of TPno(1) gives on return the data:

N Dimension of the problem, i.e. n.
NILI Number of linear inequality constraints, i.e. m11.
NINL Number of nonlinear inequality constraints, i.e. m1 − m11.
NELI Number of linear equality constraints, i.e. m21 − m1.
NENL Number of nonlinear equality constraints, i.e. m − m21.

COMMON/L2/X(n): For MODE=1, X will be set to a starting point from which the
optimization process is to be started. For MODE>1, X must contain the argument x for
which the problem functions or derivatives are to be computed.

COMMON/L3/G(m): For all indices J with INDEX1(J)=.TRUE., G(J) is set to the j-th
constraint value gj(x) (MODE=4).

COMMON/L4/GF(n): Contains the partial derivatives of the objective function on re-
turn, i.e., GF(I) is set to ∂

∂xi
f(x), i = 1, . . . ,n (MODE=3).

COMMON/L5/GG(m,n): For MODE=1, all constant partial derivatives are stored in
GG. In particular, the rows 1, . . ., m11 and m1 + 1, . . ., m21 of GG store the constant
derivatives of the linear constraints. For MODE=5, the j-th row of GG defined by IN-
DEX2(J)=.TRUE. will be replaced by the gradient of the j-th restriction, i.e. GG(J,I)
is set to ∂

∂xi
gj(x), if this term is not constant. Since all array dimensions of the common

blocks are defined by the exact values of n or m, respectively, we recommend to define
GG as a one-dimensional array in the driving program and to use it there in the form
GG((I-1)·M+J).

COMMON/L6/FX: For MODE=2, FX contains the objective function value f(x) on
return.

COMMON/L9/INDEX1(m): The logical array INDEX1 has to be initialized by the user
before calling TPno(4), and defines the restrictions which are to be computed in the case
MODE=4. INDEX1 is not changed by the subroutine.

COMMON/L10/INDEX2(m): The logical array INDEX2 has to be initialized by the user
before calling TPno(5), and defines the gradients of the nonlinear restrictions which are
to be computed in the case MODE=5. INDEX2 is not changed during a call of TPno.

COMMON/L11/LXL(n): The logical array LXL informs about the existence of lower
bounds. If there is a lower bound for the i-th variable, LXL(I) is set to .TRUE. during a
call of TPno(1). Otherwise, we find LXL(I)=.FALSE..

COMMON/L12/LXU(n): Same for the existence of upper bounds.

COMMON/L13/XL(n): If LXL(I)=.TRUE., XL(I) obtains a lower bound for the i-th
variable during a call of TPno(1).

5

COMMON/L14/XU(n): if LXU(I)=.TRUE., XU(I) is set to an upper bound for the i-th
variable during a call of TPno(1).

COMMON/L20/LEX,NEX,FEX,XEX (NEX·n) : L20 contains information on the op-
timal solution of the problem and is set during a call of TPno(1). If LEX=.FALSE., an
exact solution is not known a priori and XEX stores the best computed solution known to
the author. Otherwise, we have LEX=.TRUE. and NEX shows the number of all optimal
solutions. NEX=-1 indicates that infinitely many solutions are present. FEX contains
the minimal objective function value and XEX(J) the J-th optimal solution at positions
XEX(N·(J-1)+I), where i = 1, . . ., n and j = 1, . . ., NEX. In the case NEX = -1, XEX
contains only one arbitrary solution.

Note that in some cases, analytical gradients are not available. There is no warranty
that the gradients, as far as included, are correct. Moreover, the test problems have
been implemented in a quite elementary form. It might be necessary to set some suitable
switches of the Fortran compiler, for example to initialize all variables with zero. In some
cases, the implementation differs slightly from the printed documentation in [4] and [9]
because of some misprints or some internal modifications to improve numerical stability.

To give an example, we consider Rosenbrock’s post office problem, i.e. test problem
TP37 of the first collection, [4], given in the form

x = (x1, x2, x3)
T ∈ IR3 :

min−x1x2x3

x1 + 2x2 + 2x3 − 72 ≤ 0,

x1 + 2x2 + 2x3 ≥ 0,

0 ≤ xi ≤ 42, i = 1, 2, 3

(2)

We have three variables, i.e. n = 3, bounds for all variables and only two linear
inequality constraints, i.e. m11 = m1 = m21 = m = 3. The Fortran source code is:

SUBROUTINE TP37(MODE)

COMMON/L1/N,NILI,NINL,NELI,NENL

COMMON/L2/X(3)

COMMON/L3/G(2)

COMMON/L4/GF(3)

COMMON/L5/GG(2,3)

COMMON/L6/FX

COMMON/L9/INDEX1

COMMON/L10/INDEX2

COMMON/L11/LXL

COMMON/L12/LXU

COMMON/L13/XL(3)

COMMON/L14/XU(3)

COMMON/L20/LEX,NEX,FEX,XEX(3)

REAL*8 X,G,GF,GG,FX,XL,XU,FEX,XEX

LOGICAL LEX,LXL(3),LXU(3),INDEX1(2),INDEX2(2)

GOTO (1,2,3,4,5),MODE

1 N=3

NILI=2

NINL=0

NELI=0

NENL=0

DO 6 I=1,3

6

X(I)=10.D0

LXL(I)=.TRUE.

LXU(I)=.TRUE.

XU(I)=42.D0

6 XL(I)=0.D0

LEX=.TRUE.

NEX=1

XEX(1)=24.D0

XEX(2)=12.D0

XEX(3)=12.D0

FEX=-3.456D+3

GG(1,1)=-1.D0

GG(1,2)=-2.D0

GG(1,3)=-2.D0

GG(2,1)=1.D0

GG(2,2)=2.D0

GG(2,3)=2.D0

RETURN

2 FX=-X(1)*X(2)*X(3)

RETURN

3 GF(1)=-X(2)*X(3)

GF(2)=-X(1)*X(3)

GF(3)=-X(1)*X(2)

RETURN

4 IF (INDEX1(1)) G(1)=72.D0-X(1)-2.D0*X(2)-2.D0*X(3)

IF (INDEX1(2)) G(2)=X(1)+2.D0*X(2)+2.D0*X(3)

5 RETURN

END

To show how to call subroutine TP37, we list the corresponding Fortran source code
executing NLPQLP.

IMPLICIT NONE

INTEGER NMAX,MMAX,MNNMAX,LWA,LIWA,LACTIV

PARAMETER (NMAX = 200,

F MMAX = 200,

F MNNMAX = NMAX + NMAX + MMAX + 2,

F LWA = 1.5*NMAX*NMAX + 33*NMAX + 9*MMAX + 200,

F LIWA = NMAX + 10,

F LACTIV = 2*MMAX + 10)

REAL*8 X, G, DF, DG, F, XL, XU, FEX, XEX,

F U(MNNMAX), C(NMAX,NMAX), D(NMAX), WA(LWA)

REAL*8 ACC, ACCQP, TOL_NM, STPMIN

INTEGER N, NILI, NINL, NELI, NENL, IWA(LIWA), M, ME, MI,

F MNN2, MODE, IPRINT, IOUT, MAXFUN, MAXIT, NEX,

F MAX_NM, L, IFAIL, I, J

LOGICAL INDEX1, INDEX2, LXL, LXU, LEX, ACTIVE(LACTIV)

EXTERNAL QL

COMMON /L1/ N, NILI, NINL, NELI, NENL

F /L2/ X(NMAX)

F /L3/ G(MMAX)

F /L4/ DF(NMAX)

F /L5/ DG(NMAX*MMAX)

F /L6/ F

F /L9/ INDEX1(MMAX)

F /L10/ INDEX2(MMAX)

F /L11/ LXL(NMAX)

F /L12/ LXU(NMAX)

F /L13/ XL(NMAX)

F /L14/ XU(NMAX)

F /L20/ LEX, NEX, FEX, XEX(NMAX)

C

C Optimization settings for NLPQLP

7

C

MODE = 0

IPRINT = 2

IOUT = 6

MAXFUN = 20

MAXIT = 500

MAX_NM = 30

TOL_NM = 0.5D0

L = 1

STPMIN = 1.0D-8

ACC = 1.0D-14

ACCQP = 1.0D-14

C

C Model parameters and bounds

C

CALL TP37(1)

ME = NELI + NENL

MI = NILI + NINL

M = ME + MI

DO I=1,N

IF (.NOT.LXL(I)) XL(I) = X(I) - 1.0D+10

IF (.NOT.LXU(I)) XU(I) = X(I) + 1.0D+10

IF (X(I).LT.XL(I)) X(I) = XL(I)

IF (X(I).GT.XU(I)) X(I) = XU(I)

ENDDO

DO J=1,M

INDEX1(J) = .TRUE.

ENDDO

C

C Call of NLPQLP with reverse communication

C

IFAIL = 0

1 CONTINUE

IF (IFAIL.EQ.0.OR.IFAIL.EQ.-1) THEN

CALL TP37(2)

CALL TP37(4)

ENDIF

IF (IFAIL.EQ.0.OR.IFAIL.EQ.-2) THEN

CALL TP37(3)

CALL TP37(5)

ENDIF

CALL NLPQLP(L,M,ME,M,N,NMAX,M+N+N+2,X,F,G,DF,DG,U,XL,XU,C,D,

F ACC,ACCQP,STPMIN,MAXFUN,MAXIT,MAX_NM,TOL_NM,

F IPRINT,MODE,IOUT,IFAIL,WA(M+1),LWA,IWA,LIWA,ACTIVE,

F LACTIV,.TRUE.,QL)

IF (IFAIL.LT.0) GOTO 1

C

C End

C

STOP

END

The following output should appear on screen:

--

START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

--

Parameters:

N = 3

M = 2

ME = 0

8

MODE = 0

ACC = 0.1000D-13

ACCQP = 0.1000D-13

STPMIN = 0.1000D-07

MAXFUN = 20

MAX_NM = 30

MAXIT = 500

IPRINT = 2

Output in the following order:

IT - iteration number

F - objective function value

SCV - sum of constraint violations

NA - number of active constraints

I - number of line search iterations

ALPHA - steplength parameter

DELTA - additional variable to prevent inconsistency

KKT - Karush-Kuhn-Tucker optimality criterion

IT F SCV NA I ALPHA DELTA KKT

--

1 -0.10000000D+04 0.00D+00 2 0 0.00D+00 0.00D+00 0.44D+04

2 -0.23625000D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.11D+04

3 -0.32507304D+04 0.36D-14 1 1 0.10D+01 0.00D+00 0.69D+03

4 -0.33041403D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.36D+03

5 -0.34527380D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.58D+01

6 -0.34559629D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.76D-01

7 -0.34560000D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.25D-04

8 -0.34560000D+04 0.36D-14 1 1 0.10D+01 0.00D+00 0.90D-10

9 -0.34560000D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.46D-09

10 -0.34560000D+04 0.00D+00 1 2 0.10D+00 0.00D+00 0.25D-10

11 -0.34560000D+04 0.36D-14 1 1 0.10D+01 0.00D+00 0.10D-11

12 -0.34560000D+04 0.00D+00 1 2 0.50D+00 0.00D+00 0.25D-14

--- Final Convergence Analysis at Best Iterate ---

Best result at iteration: ITER = 12

Objective function value: F(X) = -0.34560000D+04

Approximation of solution: X =

0.24000000D+02 0.12000000D+02 0.12000000D+02

Approximation of multipliers: U =

0.14400000D+03 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

Constraint values: G(X) =

0.00000000D+00 0.72000000D+02

Distance from lower bound: XL-X =

-0.24000000D+02 -0.12000000D+02 -0.12000000D+02

Distance from upper bound: XU-X =

0.18000000D+02 0.30000000D+02 0.30000000D+02

Number of function calls: NFUNC = 14

Number of gradient calls: NGRAD = 12

Number of calls of QP solver: NQL = 12

3 Program Organization

All 306 test problems of the two collections [4] and [9] are available together with a test
frame. A decision is made which of the runs is successful, and performance results are
evaluated. With the default tolerances given, all problems can be solved successfully by
the code NLPQLP, a new version of the SQP implementation NLPQL of the author [11].

9

Results of NLPQLP are discussed in the subsequent section.
The following files are provided by the author and can be downloaded from

http://www.uni-bayreuth.de/departments/math/~kschittkowski/home.htm

1. PROB.FOR: Fortran codes of the test problems of the two collectoins mentioned
above.

2. CONV.FOR: Interface between the individual test problem codes and an available
optimization routine to facilitate the calling procedure and to be able to execute all
test problems within a loop. The subroutine is invoked by

CALL CONV(MODE)

where the test problem number is passed through the common block

COMMON/L8/NTP

3. TESTP.FOR: Test program that executes test problems in a loop. The calling
sequence for the SQP code NLPQLP is included to give an example. Different
approximation formulae for gradient evaluations are included. The code generates
the output files listed below.

4. TEST.DAT: Output file of the test frame containing numerical results obtained
by NLPQLP. Typical contants of TEST.DAT without lines generated by the NLP
routine:

TP 1 2 0 0 0 26 19 178 0.00000000E+00 0.73114619E-10 0.73E-10 0.00E+00
TP 2 2 0 0 0 20 15 140 0.50426188E-01 0.50426193E-01 0.11E-06 0.00E+00
TP 3 2 0 0 0 10 10 90 0.00000000E+00 0.16103740E-19 0.16E-19 0.00E+00
TP 4 2 0 0 0 2 2 18 0.26666667E+01 0.26666667E+01 0.00E+00 0.00E+00
TP 5 2 0 0 0 8 6 56 -0.19132230E+01 -0.19132230E+01 0.11E-10 0.00E+00
TP 6 2 1 1 0 10 9 82 0.00000000E+00 0.19130495E-12 0.19E-12 0.22E-04
TP 7 2 1 1 0 11 10 91 -0.17320508E+01 -0.17320508E+01 -0.18E-08 0.11E-07
TP 8 2 2 2 0 5 5 45 -0.10000000E+01 -0.10000000E+01 0.00E+00 0.53E-04

.....

The following data are listed, see TESTP.FOR for details:

NTP Test problem number
N Number of variables
ME Number of equality constraints
M Number of constraints
IFAIL Convergence criterion
NF Number of objective function evaluations
NDF Number of gradient evaluations of objective function
NEF Number of equivalent function evaluations, i.e. NF plus number of func-

tion calls needed for gradient approximation
FEX Exact objective function value
F Computed objective function value
DFX Relative error in objective function
DGX Sum of constraint violations including bound violations

10

5. TEST.TEX: Same as above, but with Latex separators.

6. RESULT.DAT: The following summary is shown:

(a) Flag for evaluating gradients

(b) Tolerance for gradient approximation

(c) Termination accuracy for NLP routine

(d) Randomly generated error added to objective

(e) Total number of test runs

(f) Number of successful test runs

(g) Number of local solutions obtained

(h) Number of test runs with error messaeg IFAIL>0

(i) Tolerance for determining successful return

(j) Average number of function evaluations

(k) Average number of gradient evaluations

(l) Average number of equivalent function calls

(m) Total execution time over all test runs (sec)

7. TEMP.DAT: Contains the same data in one row.

4 Numerical Results

The results of some computational tests are reported in this section. They have been
obtained by the code NLPQLP [11], a Fortran implementation of a sequential quadratic
programming algorithm. The Fortran subroutine NLPQLP solves smooth nonlinear pro-
gramming problems and is an extension of the code NLPQL, see Schittkowski [8]. The new
version is specifically tuned to run under distributed systems and to apply non-monotone
line search in error situations. A new input parameter l is introduced for the number of
parallel machines, that is the number of function calls to be executed simultaneously. In
case of l = 1, NLPQLP is more or less identical to NLPQL.

Sequential quadratic programming or SQP methods belong to the most powerful non-
linear programming algorithms we know today for solving differentiable nonlinear pro-
gramming problems of the form (1). The theoretical background is described for example
by Stoer [13] in form of a review, or in Spellucci [12] in form of an extensive text book.
From the more practical point of view, SQP methods are also introduced in the books
of Papalambros, Wilde [6] and Edgar, Himmelblau [2]. Their excellent numerical per-
formance is evaluated and compared to other methods in Schittkowski [7]. Since many
years they belong to the most frequently used algorithms to solve practical optimization
problems.

11

Since analytical derivatives are not available for all problems, we approximate them
numerically. The test examples are provided with exact solutions, either known from
analytical solutions or from the best numerical data found so far. The Fortran codes are
compiled by the Intel Visual Fortran Compiler, Version 9.1, under Windows XP64. Since
the calculation times are very short, about one second for solving all test problems, we
count only function and gradient evaluations. This is a realistic assumption, since for the
practical applications, calculation times for evaluating model functions dominate and the
numerical efforts within an optimization code are negligible.

First we need a criterion to decide whether the result of a test run is considered as
a successful return or not. Let ε > 0 be a tolerance for defining the relative termination
accuracy, xk the final iterate of a test run, and x� the supposed exact solution as reported
by the two test problem collections. Then we call the output of an execution of NLPQLP
a successful return, if the relative error in objective function is less than ε and if the sum
of all constraint violations less than ε2, i.e., if

f(xk) − f(x�) < ε|f(x�)| , if f(x�) �= 0 ,

or
f(xk) < ε , if f(x�) = 0 ,

and

r(xk) :=
me∑

j=1

|gj(xk)| +
m∑

j=me+1

|min(0, gj(xk))| < ε2 .

We take into account that NLPQLP returns a solution with a better function value
than the known one, subject to the error tolerance of the allowed constraint violation.
However, there is still the possibility that NLPQLP terminates at a local solution different
from the one known in advance. Thus, we call a test run a successful one, if NLPQLP
terminates with error message IFAIL=0, and if

f(xk) − f(x�) ≥ ε|f(x�)| , if f(x�) �= 0 ,

or
f(xk) ≥ ε , if f(x�) = 0 ,

and
r(xk) < ε2 .

For our numerical tests, we use ε = 0.01, i.e., we require a final accuracy of one per
cent. NLPQLP is executed with termination accuracy ACC=10−7, and MAXIT=500.
Gradients are approximated by forward differences. Neither variables nor functions are
scaled internally. All problems are executed with one and the same set of solution toler-
ances.

When executing NLPQLP for the 115 test examples of the first collection of Hock and
Schittkowski [4], the following results are obtained:

12

Flag for evaluating gradients : 1
Tolerance for gradient approximation : 0.1D-07
Termination accuracy for NLP routine : 0.1D-06
Randomly generated error added to objective : 0.0D+00
Total number of test runs : 115
Number of successful test runs : 115
Number of better test runs : 0
Number of local solutions obtained : 7
Number of runs without satisfying termination accuracy : 0
Tolerance for determining successful return : 0.1D-01
Average number of function evaluations : 26
Average number of gradient evaluations : 16
Average number of equivalent function calls : 122
Total execution time over all test runs : 0.12 (sec)

References

[1] Bongartz I., Conn A.R., Gould N., Toint Ph. (1995): CUTE: Constrained and
unconstrained testing environment, Transactions on Mathematical Software, Vol.
21, No. 1, 123-160

[2] Edgar T.F., Himmelblau D.M. (1988): Optimization of Chemical Processes, Mc-
Graw Hill

[3] Fourer R., Gay D.M., Kernighan B.W. (2002): AMPL: A Modeling Language for
Mathematical Programming, Brooks/Cole Publishing Company

[4] Hock W., Schittkowski K. (1981): Test Examples for Nonlinear Programming
Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer

[5] Hock W., Schittkowski K. (1983): A comparative performance evaluation of 27
nonlinear programming codes, Computing, Vol. 30, 335-358

[6] Papalambros P.Y., Wilde D.J. (1988): Principles of Optimal Design, Cambridge
University Press

[7] Schittkowski K. (1980): Nonlinear Programming Codes, Lecture Notes in Economics
and Mathematical Systems, Vol. 183 Springer

[8] Schittkowski K. (1985/86): NLPQL: A Fortran subroutine solving constrained non-
linear programming problems, Annals of Operations Research, Vol. 5, 485-500

[9] Schittkowski K. (1987): More Test Examples for Nonlinear Programming, Lecture
Notes in Economics and Mathematical Systems, Vol. 182, Springer

13

[10] Schittkowski K., Zillober C., Zotemantel R. (1994): Numerical comparison of non-
linear programming algorithms for structural optimization, Structural Optimization,
Vol. 7, No. 1, 1-28

[11] Schittkowski K. (2006): NLPQLP: A Fortran implementation of a sequential
quadratic programming algorithm with distributed and non-monotone line search
- user’s guide, version 2.2, Report, Department of Computer Science, University of
Bayreuth

[12] Spellucci P. (1993): Numerische Verfahren der nichtlinearen Optimierung,
Birkhäuser

[13] Stoer J. (1985): Foundations of recursive quadratic programming methods for solv-
ing nonlinear programs, in: Computational Mathematical Programming, K. Schitt-
kowski, ed., NATO ASI Series, Series F: Computer and Systems Sciences, Vol. 15,
Springer

APPENDIX: Individual Results

The appendix contains a list of all test problems with the data
TP test problem number,
N number of variables,
ME number of equality constraints,
M number of constraints,
IFAIL convergence criterion,
NF number of objective function evaluations,
NDF number of gradient evaluations of objective function,
NEF number of equivalent function evaluations, i.e. NF plus number of func-

tion calls needed for gradient approximation,
FEX exact objective function value,
F computed objective function value,
DFX relative error in objective function,
DGX sum of constraint violations including bound violations.

The performance results are obtained by NLPQLP under the conditions outlined in
Section 4.

TP N ME M IFAIL NF NDF NEF FEX F DFX DGX
1 2 0 0 0 26 19 64 0.00000000E+00 0.58256090E-10 0.58E-10 0.00E+00
2 2 0 0 0 20 15 50 0.50426188E-01 0.50426193E-01 0.10E-06 0.00E+00
3 2 0 0 0 10 10 30 0.00000000E+00 0.23971330E-17 0.24E-17 0.00E+00
4 2 0 0 0 2 2 6 0.26666667E+01 0.26666667E+01 0.00E+00 0.00E+00
5 2 0 0 0 8 6 20 -0.19132230E+01 -0.19132230E+01 0.11E-10 0.00E+00

(continued)

14

TP N ME M IFAIL NF NDF NEF FEX F DFX DGX
6 2 1 1 0 10 9 28 0.00000000E+00 0.18671535E-12 0.19E-12 0.22E-04
7 2 1 1 0 11 10 31 -0.17320508E+01 -0.17320508E+01 -0.86E-09 0.51E-08
8 2 2 2 0 5 5 15 -0.10000000E+01 -0.10000000E+01 0.00E+00 0.53E-04
9 2 1 1 0 6 6 18 -0.50000000E+00 -0.50000000E+00 0.55E-09 0.18E-14
10 2 0 1 0 13 12 37 -0.10000000E+01 -0.10000000E+01 -0.45E-10 0.91E-10
11 2 0 1 0 10 9 28 -0.84984642E+01 -0.84984642E+01 -0.30E-12 0.84E-12
12 2 0 1 0 9 8 25 -0.30000000E+02 -0.30000000E+02 -0.58E-09 0.35E-07
13 2 0 1 0 42 42 126 0.10000000E+01 0.10000001E+01 0.98E-07 0.00E+00
14 2 1 2 0 6 6 18 0.13934650E+01 0.13934650E+01 -0.10E-11 0.76E-12
15 2 0 2 0 3 3 9 0.30650001E+01 0.30650000E+01 -0.23E-07 0.19E-08
16 2 0 2 0 12 8 28 0.25000000E+00 0.39820605E+01 0.15E+02 0.00E+00
17 2 0 2 0 20 17 54 0.10000000E+01 0.10000000E+01 0.28E-11 0.00E+00
18 2 0 2 0 8 8 24 0.50000000E+01 0.50000000E+01 -0.11E-08 0.39E-07
19 2 0 2 0 7 7 21 -0.69618139E+04 -0.69618139E+04 -0.22E-14 0.36E-14
20 2 0 3 0 5 5 15 0.38198730E+02 0.38198730E+02 0.18E-09 0.00E+00
21 2 0 1 0 3 2 7 -0.99960000E+02 -0.99960000E+02 -0.89E-11 0.00E+00
22 2 0 2 0 7 6 19 0.10000000E+01 0.10000000E+01 -0.22E-11 0.33E-11
23 2 0 5 0 7 7 21 0.20000000E+01 0.20000000E+01 0.30E-13 0.00E+00
24 2 0 3 0 5 5 15 -0.10000000E+01 -0.10000000E+01 -0.17E-07 0.41E-07
25 3 0 0 0 1 1 4 0.00000000E+00 0.32835000E+02 0.33E+02 0.00E+00
26 3 1 1 0 20 18 74 0.00000000E+00 0.61599042E-07 0.62E-07 0.59E-04
27 3 1 1 0 37 22 103 0.40000000E+01 0.40000000E+01 0.42E-10 0.25E-12
28 3 1 1 0 5 4 17 0.00000000E+00 0.35555652E-13 0.36E-13 0.44E-07
29 3 0 1 0 13 12 49 -0.22627417E+02 -0.22627417E+02 -0.21E-09 0.69E-08
30 3 0 1 0 18 16 66 0.10000000E+01 0.10000000E+01 0.76E-09 0.00E+00
31 3 0 1 0 12 7 33 0.60000000E+01 0.60000000E+01 -0.51E-08 0.80E-08
32 3 1 2 0 3 3 12 0.10000000E+01 0.10000000E+01 0.65E-08 0.33E-08
33 3 0 2 0 5 5 20 -0.45857864E+01 -0.40000000E+01 0.13E+00 0.00E+00
34 3 0 2 0 8 8 32 -0.83403245E+00 -0.83403245E+00 -0.12E-09 0.11E-08
35 3 0 1 0 7 7 28 0.11111111E+00 0.11111111E+00 0.54E-11 0.00E+00
36 3 0 1 0 10 4 22 -0.33000000E+04 -0.33000000E+04 0.90E-14 0.00E+00
37 3 0 2 0 12 10 42 -0.34560000E+04 -0.34560000E+04 -0.15E-12 0.36E-11
38 4 0 0 0 111 84 447 0.00000000E+00 0.16953149E-08 0.17E-08 0.00E+00
39 4 2 2 0 14 12 62 -0.10000000E+01 -0.10000000E+01 -0.41E-08 0.25E-08
40 4 3 3 0 6 6 30 -0.25000000E+00 -0.25000000E+00 -0.93E-09 0.43E-09
41 4 1 1 0 8 8 40 0.19259259E+01 0.19259259E+01 0.75E-10 0.10E-10
42 4 2 2 0 10 8 42 0.13857864E+02 0.13857864E+02 -0.31E-08 0.17E-07
43 4 0 3 0 14 11 58 -0.44000000E+02 -0.44000000E+02 -0.35E-10 0.64E-09
44 4 0 6 0 6 6 30 -0.15000000E+02 -0.15000000E+02 -0.27E-08 0.27E-07
45 5 0 0 0 8 8 48 0.10000000E+01 0.10000000E+01 0.00E+00 0.00E+00
46 5 2 2 0 14 12 74 0.00000000E+00 0.55478753E-06 0.55E-06 0.19E-06
47 5 3 3 0 17 13 82 0.00000000E+00 0.46084429E-09 0.46E-09 0.93E-07
48 5 2 2 0 9 8 49 0.00000000E+00 0.27709272E-07 0.28E-07 0.80E-10
49 5 2 2 0 9 6 39 0.00000000E+00 0.22835655E-04 0.23E-04 0.15E-09
50 5 3 3 0 18 14 88 0.00000000E+00 0.31210594E-08 0.31E-08 0.11E-11
51 5 3 3 0 5 3 20 0.00000000E+00 0.23430051E-15 0.23E-15 0.19E-07
52 5 3 3 0 8 6 38 0.53266476E+01 0.53266476E+01 0.40E-10 0.55E-12
53 5 3 3 0 8 7 43 0.40930233E+01 0.40930233E+01 0.74E-08 0.51E-10
54 6 1 1 0 2 2 14 -0.90807476E+00 -0.72239851E-33 0.10E+01 0.14E-05
55 6 6 6 0 2 2 14 0.63333333E+01 0.66666667E+01 0.53E-01 0.15E-06
56 7 4 4 0 11 9 74 -0.34560000E+01 -0.34560000E+01 -0.10E-07 0.24E-07
57 2 0 1 0 5 3 11 0.28459670E-01 0.30646306E-01 0.77E-01 0.00E+00
59 2 0 3 0 17 15 47 -0.78042263E+01 -0.67545660E+01 0.13E+00 0.00E+00
60 3 1 1 0 11 10 41 0.32568200E-01 0.32568200E-01 0.23E-08 0.67E-08
61 3 2 2 0 8 7 29 -0.14364614E+03 -0.14364614E+03 -0.11E-09 0.18E-07
62 3 1 1 0 14 10 44 -0.26272514E+05 -0.26272514E+05 -0.69E-12 0.18E-13
63 3 2 2 0 10 9 37 0.96171517E+03 0.96171517E+03 0.32E-11 0.78E-11

(continued)

15

TP N ME M IFAIL NF NDF NEF FEX F DFX DGX
64 3 0 1 0 49 33 148 0.62998424E+04 0.62998424E+04 -0.52E-10 0.17E-10
65 3 0 1 0 8 8 32 0.95352886E+00 0.95352882E+00 -0.42E-07 0.54E-06
66 3 0 2 0 7 7 28 0.51816327E+00 0.51816327E+00 -0.22E-08 0.31E-08
67 3 0 14 0 20 20 80 -0.11620365E+04 -0.11620365E+04 -0.15E-07 0.00E+00
68 4 2 2 0 40 26 144 -0.92042502E+00 -0.92042504E+00 -0.18E-07 0.11E-06
69 4 2 2 0 50 32 178 -0.95671289E+03 -0.95671289E+03 0.43E-09 0.11E-10
70 4 0 1 0 37 34 173 0.74984636E-02 0.74984827E-02 0.26E-05 0.00E+00
71 4 1 2 0 5 5 25 0.17014017E+02 0.17014017E+02 -0.26E-08 0.22E-08
72 4 0 2 0 22 22 110 0.72767938E+03 0.72767936E+03 -0.25E-07 0.11E-11
73 4 1 3 0 5 5 25 0.29894378E+02 0.29894378E+02 0.62E-10 0.35E-11
74 4 3 5 0 10 10 50 0.51264981E+04 0.51264981E+04 0.50E-10 0.15E-09
75 4 3 5 0 9 9 45 0.51744129E+04 0.51744127E+04 -0.37E-07 0.27E-11
76 4 0 3 0 6 6 30 -0.46818182E+01 -0.46818182E+01 0.49E-10 0.00E+00
77 5 2 2 0 16 15 91 0.24150513E+00 0.24150513E+00 -0.14E-07 0.35E-07
78 5 3 3 0 8 8 48 -0.29197004E+01 -0.29197004E+01 0.50E-10 0.29E-11
79 5 3 3 0 10 9 55 0.78776821E-01 0.78776822E-01 0.10E-07 0.30E-07
80 5 3 3 0 7 7 42 0.53949848E-01 0.53949847E-01 -0.73E-08 0.72E-08
81 5 3 3 0 8 8 48 0.53949848E-01 0.53949846E-01 -0.28E-07 0.27E-07
83 5 0 6 0 5 5 30 -0.30665539E+05 -0.30665539E+05 -0.27E-11 0.00E+00
84 5 0 6 0 10 10 60 -0.52803351E+02 -0.52803351E+02 -0.29E-10 0.93E-14
85 5 0 38 0 91 56 371 -0.19051338E+01 -0.19051553E+01 -0.11E-04 0.15E-06
86 5 0 10 0 6 5 31 -0.32348679E+02 -0.32348679E+02 0.20E-09 0.11E-15
87 6 4 4 0 20 16 116 0.89275977E+04 0.89275977E+04 0.60E-10 0.54E-08
88 2 0 1 0 24 18 60 0.13626568E+01 0.13626907E+01 0.25E-04 0.26E-12
89 3 0 1 0 42 27 123 0.13626568E+01 0.13626907E+01 0.25E-04 0.45E-11
90 4 0 1 0 59 26 163 0.13626568E+01 0.13626907E+01 0.25E-04 0.20E-11
91 5 0 1 0 47 33 212 0.13626568E+01 0.13626909E+01 0.25E-04 0.13E-10
92 6 0 1 0 50 36 266 0.13626568E+01 0.13626907E+01 0.25E-04 0.00E+00
93 6 0 2 0 15 12 87 0.13507596E+03 0.13507596E+03 0.12E-07 0.41E-09
95 6 0 4 0 2 2 14 0.15619514E-01 0.15619525E-01 0.69E-06 0.18E-08
96 6 0 4 0 2 2 14 0.15619513E-01 0.15619525E-01 0.76E-06 0.18E-08
97 6 0 4 0 7 7 49 0.31358091E+01 0.31358091E+01 -0.29E-08 0.35E-07
98 6 0 4 0 7 7 49 0.31358091E+01 0.31358091E+01 -0.29E-08 0.35E-07
99 7 2 2 0 279 46 601 -0.83107989E+09 -0.83107989E+09 0.71E-11 0.17E-09
100 7 0 4 0 20 14 118 0.68063006E+03 0.68063006E+03 0.11E-09 0.25E-07
101 7 0 6 0 70 42 364 0.18097648E+04 0.18097648E+04 0.51E-11 0.17E-11
102 7 0 6 0 52 36 304 0.91188057E+03 0.91188057E+03 0.10E-09 0.39E-12
103 7 0 6 0 46 31 263 0.54366796E+03 0.54366796E+03 0.75E-10 0.86E-12
104 8 0 6 0 16 16 144 0.39511634E+01 0.39511634E+01 0.44E-09 0.57E-08
105 8 0 1 0 53 46 421 0.11384162E+04 0.11384185E+04 0.20E-05 0.00E+00
106 8 0 6 0 609 226 2417 0.70493309E+04 0.70492480E+04 -0.12E-04 0.16E-06
107 9 6 6 0 8 8 80 0.50550118E+04 0.50550114E+04 -0.70E-07 0.74E-13
108 9 0 13 0 13 13 130 -0.86602540E+00 -0.86602540E+00 -0.81E-09 0.16E-08
109 9 6 10 0 56 19 227 0.53620693E+04 0.53620692E+04 -0.18E-07 0.57E-12
110 10 0 0 0 12 8 92 -0.45778470E+02 -0.45778470E+02 0.41E-09 0.00E+00
111 10 3 3 0 51 51 561 -0.47761090E+02 -0.47761091E+02 -0.13E-07 0.12E-09
112 10 3 3 0 39 21 249 -0.47761086E+02 -0.47761091E+02 -0.10E-06 0.33E-11
113 10 0 8 0 16 13 146 0.24306209E+02 0.24306209E+02 0.16E-09 0.24E-08
114 10 3 11 0 42 33 372 -0.17688070E+04 -0.17688070E+04 -0.16E-09 0.23E-12
116 13 0 15 0 100 68 984 0.97588409E+02 0.97587510E+02 -0.92E-05 0.17E-08
117 15 0 5 0 16 16 256 0.32348679E+02 0.32348679E+02 0.49E-09 0.00E+00
118 15 0 29 0 20 20 320 0.66482045E+03 0.66482045E+03 0.11E-10 0.00E+00
119 16 8 8 0 30 16 286 0.24489970E+03 0.24489970E+03 -0.13E-10 0.57E-09

16

APPENDIX: Test Problems of the First Collection

Purpose of this appendix is to list a detailed description of all test problems published
in the monograph [4], which is out of print. We proceed from the nonlinear program (1)
and list the following data of an example:

PROBLEM: test problem number
CLASSIFICATION: classification number in the form OCD-Kr-s ac-

cording to the scheme given below
NUMBER OF VARIABLES: number of variables n
NUMBER OF CONSTRAINTS: number of inequality constraints, m1, number of

equality constraints, i.e., m − m1, and number of
variable bounds of variables, b

OBJECTIVE FUNCTION: analytical expressions for objective function f(x)
CONSTRAINTS: analytical expressions for constraints gj(x), j =

1, . . . , m
START: starting values for variables, x0, and corresponding

objective function value, f(x0), together with an
information whether x0 is feasible or not

SOLUTION: information about optimal solution x�, i.e.,
- objective function value f(x�)
- constraint violation, r(x�)
- norm of gradient of Lagrange function
- number of active constraints, μ
- active constraints, I(x�)
- degree of degeneracy, u�

max/u
�
min

- condition number of projected Hessian of La-
grange function, λ�

max/λ
�
min

The general form of the classification scheme is

OCD-Kr-s

with

O - objective function
C - constraints
D - regularity
K - information about solution, i.e., whether an exact solution is known or not
r - order of partial derivatives
s - serial number within a class

The purpose of the classification scheme is to characterize the mathematical structure
of objective function and constraints, and to give more information about the implemen-
tation and the solution. A problem is called a regular one, if first and second derivatives

17

exist in the feasible region for all problem functions, otherwise an irregular one. The
subsequent abbreviations are used:

class key description
O C constant function

L linear function
Q quadratic function
S sum of squares
P generalized polynomial function
G general function

C U unconstrained problem
B only upper and lower bounds
L linear functions
Q quadratic functions
P generalized polynomial functions
G general functions

D R regular problem
I irregular problem

K T exact solution known (theoretical problem)
P exact solution not known (practical problem)

r 0 derivatives not implemented
1 first derivatives implemented

For some test problems, we cannot describe objective or constraint functions just by a
few analytical expressions. In these cases, program fragments are attached at the end of
this section together with more extensive information about a test problem, e.g., constant
data, starting or solution values.

The subsequent pages are xeroxed copies of the original publication.

18

Installateur
Note
1.E4

Installateur
Note
/0.96 + 0.96*

Administrator
Sticky Note
- 0.12694 x1^2

Klaus Schittkowski
Note
0.4

	Untitled

