Test Examples for Nonlinear Programming Codes

- All Problems from the Hock-Schittkowski-Collection -

Address:	Prof. Klaus Schittkowski
	Department of Computer Science
	University of Bayreuth
	D - 95440 Bayreuth
Phone:	$+49\ 921\ 557750$
E-mail:	klaus.schittkowski@uni-bayreuth.de
Web:	$\rm http://www.klaus-schittkowski.de$
Date:	12.2.2009

Abstract

The test problems of the Hock and Schittkowski-collection¹ became quite popular in the past for developing and testing nonlinear programming codes. Since this first collection is out of print, we present a short review and the original scanned test problem documentation. We provide optimal solutions, program organization, and some numerical test results.

¹Test Examples for Nonlinear Programming Codes, Willi Hock, Klaus Schittkowski, Springer, Lecture Notes in Economics and Mathematical Systems, Vol. 187

1 Introduction

A couple of years ago, the author published two test problem collections for testing nonlinear programming codes, see Hock and Schittkowski [4] and Schittkowski [9]. The problems are widely used and contained also in other test problem collections, for example in the Cute library of Bongartz et al. [1], available through the URL

http://www.cse.clrc.ac.uk/activity/cute

The test problem collection of Spellucci [12] is available through the ftp site

ftp://ftp.mathematik.tu-darmstadt.de/pub/department/software/opti/

confer also the benchmark test page maintained by Mittelmann

http://plato.la.asu.edu/bench.html

In addition, AMPL versions of all test problems of the two collections are available through the links

http://www.sor.princeton.edu/~rvdb/ampl/nlmodels/hs/index.html

and

```
http://www.sor.princeton.edu/~rvdb/ampl/nlmodels/s/index.html
```

see also Fourer et al. [3] for more details about AMPL. The original Fortran implementation can be downloaded from

http://www.old.uni-bayreuth.de/departments/math/~kschittkowski/downloads.htm

When developing a new version of a sequential quadratic programming algorithm, the test examples were investigated again and used for some numerical tests, see Schittkowski [11]. The purpose of the paper is to outline the usage of the codes and to make them available for public usage.

We consider the general optimization problem, to minimize an objective function f(x)under nonlinear equality and inequality constraints,

$$\min f(x) a_j^T x + \beta_j \ge 0, \quad j = 1, \dots, m_{11}, x \in I\!\!R^n : \begin{cases} g_j(x) \ge 0, & j = m_{11} + 1, \dots, m_1, \\ a_j^T x + \beta_j = 0, & j = m_1 + 1, \dots, m_{21}, \\ g_j(x) = 0, & j = m_{21} + 1, \dots, m, \\ x_l \le x \le x_n \end{cases}$$
(1)

where x is an n-dimensional parameter vector. It is supposed that the first m_{11} inequality constraints and that the first $m_{21} - m_1$ equations are linear, whereas the remaining ones are nonlinear. To facilitate the notation, we set $g_j(x) = a_j^T x + \beta_j$ for $j = 1, ..., m_{11}$ and $j = m_1 + 1, \ldots, m_{21}$. Objective function and constraints are supposed to be continuously differentiable on the whole \mathbb{R}^n .

The test problems have been used in the past to develop the nonlinear programming code NLPQL [8], a Fortran implementation of a sequential quadratic programming (SQP) algorithm. The design of the numerical algorithm is founded on extensive comparative numerical tests of Schittkowski [7], Schittkowski et al. [10], and Hock, Schittkowski [5]. To complete the numerical tests, an additional random test problem generator was developed for a major comparative study, see [7]. More than 100 test problems based on a finite element formulation are collected for the comparative evaluation in Schittkowski et al. [10].

All these efforts indicate the importance of a qualified set of test examples for debugging, validation, performance evaluation, and quantitative numerical comparisons with alternative codes. Although not collected in a very systematically way, the test problems represent all numerical difficulties we observe in practice, for example

- 1. badly scaled objective and constraint functions,
- 2. badly scaled variables,
- 3. non-smooth model functions,
- 4. ill-conditioned optimization problems,
- 5. non-regular solutions at points where the constraint qualification is not satisfied,
- 6. different local solutions,
- 7. infinitely many solutions.

Academic test problems allow either an analytical or a numerical investigation of all interesting properties, with nearly no or only limited efforts. On the other hand, nonlinear programming problems based on a *real-life* background are often too complex to serve as test problems, are often not available, are not programmed in a standard form as required for massive tests, or contain round-off and truncation errors, in particular if secondary iterative numerical algorithms are included to compute function and gradient values. The latter argument is crucial, since most non-trivial application problems generate numerical errors in the one or other form. Often gradients are only available by forward differences. However, we can use the academic test problems also in this situation, by adding randomly generated errors and by approximating derivatives numerically. A few corresponding test results are found in Schittkowski [11].

It is important that all test examples come with an optimal solution obtained by analytical or numerical experimentation investigation. Most examples are non-convex, but we hope that at least in most cases, we are able to provide a global solution. For most test problems, analytical gradients are available. However, we cannot give a guarantee that they are correct and recommend usage of numerical differentiation.

The Fortran source codes of all test problems are made available through

http://www.uni-bayreuth.de/departments/math/~kschittkowski/home.htm

The usage of the subroutines is documented in Section 2 together with a detailed example. A driver program is listed that shows how a nonlinear programming code, in this case NLPQLP, would evaluate function and gradient values. The files that are provided by the author, are listed in Section 3 together with a description of the generated output. A main program that executes all 115 test examples within a loop and solves them by the code NLPQLP, see Schittkowski [11], is attached. The code contains also an evaluation of numerical results based on a decision, whether the result of a test run is considered to be a successful one or not. Some numerical tests are included in Section 4 which are helpful for comparing own implementations. An appendix contains a list of all individual results including performance data, i.e. number of function calls, number of iterations, errors in objective function, and constraint violations.

Since the first test problem collection [4] is out of print, an appendix is attached which contains a detailed documentation of all problems in the original form.

2 Usage of the Fortran Subroutines

A test problem is set up by

CALL TPno(MODE)

where *no* stands for any of the available test problem numbers. This section describes the organization of the FORTRAN subroutines and informs the user how to execute the test problems. Since it is assumed that at least a subset of the problems is used within a series of test runs for different optimization programs, the problems are coded in a very flexible manner. For example, it is possible to compute an arbitrary subset of restriction values. The parameter MODE describes the five possible operations of the subroutine.

- MODE=1: The driving program will be provided with all information necessary to initialize an optimization program for the solution of the test problem, i.e. dimension, type and number of constraints, upper and lower bounds, starting point, derivatives of linear constraints, and, in particular, the exact or computed optimal solution.
- MODE=2: The objective function f(x) is computed at a current iterate x.
- MODE=3: The gradient $\nabla f(x)$ of the objective function will be computed.
- MODE=4: A predetermined subset of constraints $g_1(x), \ldots, g_m(x)$ is evaluated at the actual iterate x.
- MODE=5: The gradients of a predetermined subset of nonlinear constraints are computed, i.e. of $\nabla g_1(x), \ldots, \nabla g_m(x)$.

The information on the test problem is delivered in the following common-blocks which have to be defined in the driving program with appropriate array dimensions:

COMMON/L1/N,NILI,NINL,NELI,NENL: A call of TPno(1) gives on return the data:

- N Dimension of the problem, i.e. n.
- NILI Number of linear inequality constraints, i.e. m_{11} .
- NINL Number of nonlinear inequality constraints, i.e. $m_1 m_{11}$.
- NELI Number of linear equality constraints, i.e. $m_{21} m_1$.
- NENL Number of nonlinear equality constraints, i.e. $m m_{21}$.

COMMON/L2/X(n): For MODE=1, X will be set to a starting point from which the optimization process is to be started. For MODE>1, X must contain the argument x for which the problem functions or derivatives are to be computed.

COMMON/L3/G(m): For all indices J with INDEX1(J)=.TRUE., G(J) is set to the *j*-th constraint value $g_j(x)$ (MODE=4).

COMMON/L4/GF(n): Contains the partial derivatives of the objective function on return, i.e., GF(I) is set to $\frac{\partial}{\partial x_i} f(x)$, $i = 1, \ldots, n$ (MODE=3).

COMMON/L5/GG(m,n): For MODE=1, all constant partial derivatives are stored in GG. In particular, the rows 1, ..., m_{11} and $m_1 + 1$, ..., m_{21} of GG store the constant derivatives of the linear constraints. For MODE=5, the *j*-th row of GG defined by IN-DEX2(J)=.TRUE. will be replaced by the gradient of the *j*-th restriction, i.e. GG(J,I) is set to $\frac{\partial}{\partial x_i}g_j(x)$, if this term is not constant. Since all array dimensions of the common blocks are defined by the exact values of *n* or *m*, respectively, we recommend to define GG as a one-dimensional array in the driving program and to use it there in the form GG((I-1)·M+J).

COMMON/L6/FX: For MODE=2, FX contains the objective function value f(x) on return.

COMMON/L9/INDEX1(m): The logical array INDEX1 has to be initialized by the user before calling TPno(4), and defines the restrictions which are to be computed in the case MODE=4. INDEX1 is not changed by the subroutine.

COMMON/L10/INDEX2(m): The logical array INDEX2 has to be initialized by the user before calling TPno(5), and defines the gradients of the nonlinear restrictions which are to be computed in the case MODE=5. INDEX2 is not changed during a call of TPno.

COMMON/L11/LXL(n): The logical array LXL informs about the existence of lower bounds. If there is a lower bound for the *i*-th variable, LXL(I) is set to .TRUE. during a call of TPno(1). Otherwise, we find LXL(I)=.FALSE..

COMMON/L12/LXU(n): Same for the existence of upper bounds.

COMMON/L13/XL(n): If LXL(I)=.TRUE., XL(I) obtains a lower bound for the *i*-th variable during a call of TPno(1).

COMMON/L14/XU(n): if LXU(I)=.TRUE., XU(I) is set to an upper bound for the *i*-th variable during a call of TPno(1).

COMMON/L20/LEX,NEX,FEX,XEX ($NEX \cdot n$) : L20 contains information on the optimal solution of the problem and is set during a call of TPno(1). If LEX=.FALSE., an exact solution is not known a priori and XEX stores the best computed solution known to the author. Otherwise, we have LEX=.TRUE. and NEX shows the number of all optimal solutions. NEX=-1 indicates that infinitely many solutions are present. FEX contains the minimal objective function value and XEX(J) the J-th optimal solution at positions XEX(N·(J-1)+I), where i = 1, ..., n and j = 1, ..., NEX. In the case NEX = -1, XEX contains only one arbitrary solution.

Note that in some cases, analytical gradients are not available. There is no warranty that the gradients, as far as included, are correct. Moreover, the test problems have been implemented in a quite elementary form. It might be necessary to set some suitable switches of the Fortran compiler, for example to initialize all variables with zero. In some cases, the implementation differs slightly from the printed documentation in [4] and [9] because of some misprints or some internal modifications to improve numerical stability.

To give an example, we consider Rosenbrock's post office problem, i.e. test problem TP37 of the first collection, [4], given in the form

$$x = (x_1, x_2, x_3)^T \in I\!\!R^3: \begin{array}{l} \min -x_1 x_2 x_3 \\ x_1 + 2x_2 + 2x_3 - 72 \le 0, \\ x_1 + 2x_2 + 2x_3 \ge 0, \\ 0 \le x_i \le 42, \end{array}$$
(2)

We have three variables, i.e. n = 3, bounds for all variables and only two linear inequality constraints, i.e. $m_{11} = m_1 = m_{21} = m = 3$. The Fortran source code is:

```
SUBROUTINE TP37(MODE)
COMMON/L1/N,NILI,NINL,NELI,NENL
COMMON/L2/X(3)
COMMON/L3/G(2)
COMMON/L4/GF(3)
COMMON/L5/GG(2,3)
COMMON/L6/FX
COMMON/L9/INDEX1
COMMON/L10/INDEX2
COMMON/L11/LXL
COMMON/L12/LXU
COMMON/L13/XL(3)
COMMON/L14/XU(3)
COMMON/L20/LEX,NEX,FEX,XEX(3)
REAL*8 X,G,GF,GG,FX,XL,XU,FEX,XEX
LOGICAL LEX,LXL(3),LXU(3),INDEX1(2),INDEX2(2)
GOTO (1,2,3,4,5),MODE
N=3
NTLT=2
NINL=0
NELI=0
NENL=0
DO 6 I=1,3
```

1

	X(I)=10.D0									
	LXL(I)=.TRUE.									
	LXU(I)=.TRUE.									
	XU(I)=42.D0									
6	XL(I)=0.D0									
	LEX=.TRUE.									
	NEX=1									
	XEX(1)=24.D0									
	XEX(2)=12.D0									
	XEX(3)=12.D0									
	FEX=-3.456D+3									
	GG(1,1)=-1.DO									
	GG(1,2) = -2.D0									
	GG(1,3) = -2.D0									
	GG(2,1)=1.D0									
	GG(2,2)=2.DO									
	GG(2,3)=2.D0									
	RETURN									
2	FX = -X(1) * X(2) * X(3)									
	RETURN									
3	GF(1) = -X(2) * X(3)									
	GF(2) = -X(1) * X(3)									
	GF(3) = -X(1) * X(2)									
	RETURN									
4	IF (INDEX1(1)) G(1)=72.D0-X(1)-2.D0*X(2)-2.D0*X(3)									
	IF (INDEX1(2)) G(2)=X(1)+2.D0*X(2)+2.D0*X(3)									
5	RETURN									
	FND									

To show how to call subroutine TP37, we list the corresponding Fortran source code $% \left({{{\rm{TP}}} \right)$ executing NLPQLP.

	IMPLICIT	NONE
	INTEGER	NMAX,MMAX,MNNMAX,LWA,LIWA,LACTIV
	PARAMETER	(NMAX = 200,
	F	MMAX = 200,
	F	MNNMAX = NMAX + NMAX + MMAX + 2,
	F	LWA = 1.5*NMAX*NMAX + 33*NMAX + 9*MMAX + 200,
	F	LIWA = NMAX + 10,
	F	LACTIV = 2*MMAX + 10)
	REAL*8	X, G, DF, DG, F, XL, XU, FEX, XEX,
	F	U(MNNMAX), C(NMAX,NMAX), D(NMAX), WA(LWA)
	REAL*8	ACC, ACCQP, TOL_NM, STPMIN
	INTEGER	N, NILI, NINL, NELI, NENL, IWA(LIWA), M, ME, MI,
	F	MNN2, MODE, IPRINT, IOUT, MAXFUN, MAXIT, NEX,
	F	MAX_NM, L, IFAIL, I, J
	LOGICAL	INDEX1, INDEX2, LXL, LXU, LEX, ACTIVE(LACTIV)
	EXTERNAL	QL
	COMMON	/L1/ N, NILI, NINL, NELI, NENL
	F	/L2/ X(NMAX)
	F	/L3/ G(MMAX)
	F	/L4/ DF(NMAX)
	F	/L5/ DG(NMAX*MMAX)
	F	/L6/ F
	F	/L9/ INDEX1(MMAX)
	F	/L10/ INDEX2(MMAX)
	F	/L11/ LXL(NMAX)
	F	/L12/ LXU(NMAX)
	F	/L13/ XL(NMAX)
	F	/L14/ XU(NMAX)
	F	/L20/ LEX, NEX, FEX, XEX(NMAX)
С		
С	Optimization	n settings for NLPQLP

```
С
```

```
MODE = 0
      IPRINT = 2
      IOUT = 6
      MAXFUN = 20
      MAXIT = 500
      MAX_NM = 30
      TOL_NM = 0.5DO
         = 1
      L
      STPMIN = 1.0D-8
      ACC = 1.0D-14
      ACCQP = 1.0D-14
С
С
   Model parameters and bounds
С
      CALL TP37(1)
      ME = NELI + NENL
      MI = NILI + NINL
      M = ME + MI
      DO I=1,N
       IF (.NOT.LXL(I)) XL(I) = X(I) - 1.0D+10
        IF (.NOT.LXU(I)) XU(I) = X(I) + 1.0D+10
        IF (X(I).LT.XL(I)) X(I) = XL(I)
        IF (X(I).GT.XU(I)) X(I) = XU(I)
      ENDDO
      DO J=1,M
        INDEX1(J) = .TRUE.
      ENDDO
С
С
    Call of NLPQLP with reverse communication
С
      IFAIL = 0
    1 CONTINUE
      IF (IFAIL.EQ.O.OR.IFAIL.EQ.-1) THEN
        CALL TP37(2)
         CALL TP37(4)
      ENDIF
      IF (IFAIL.EQ.O.OR.IFAIL.EQ.-2) THEN
        CALL TP37(3)
        CALL TP37(5)
      ENDIF
     CALL NLPQLP(L,M,ME,M,N,NMAX,M+N+N+2,X,F,G,DF,DG,U,XL,XU,C,D,
     F
                 ACC, ACCQP, STPMIN, MAXFUN, MAXIT, MAX_NM, TOL_NM,
     F
                 IPRINT,MODE,IOUT,IFAIL,WA(M+1),LWA,IWA,LIWA,ACTIVE,
    F
                 LACTIV, .TRUE.,QL)
     IF (IFAIL.LT.O) GOTO 1
С
С
    End
С
      STOP
      END
```

The following output should appear on screen:

START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM Parameters: N = 3 M = 2 ME = 0

MODE	=	0	
ACC	=	0.1000D-13	3
ACCQP	=	0.1000D-13	3
STPMIN	=	0.1000D-0	7
MAXFUN	=	20	
MAX_NM	=	30	
MAXIT	=	500	
IPRINT	=	2	
Output in	the	following	order
IT -	- ite	eration num	nber
F -	- ob	iective fu	nction

F	-	objective function value
SCV	-	sum of constraint violations
NA	-	number of active constraints
I	-	number of line search iterations
ALPHA	-	steplength parameter
DELTA	-	additional variable to prevent inconsistency
KKT	-	Karush-Kuhn-Tucker optimality criterion

IT	F	SCV	NA	I	ALPHA	DELTA	KKT
1	-0.10000000D+04	0.00D+00	2	0	0.00D+00	0.00D+00	0.44D+04
2	-0.23625000D+04	0.00D+00	1	1	0.10D+01	0.00D+00	0.11D+04
3	-0.32507304D+04	0.36D-14	1	1	0.10D+01	0.00D+00	0.69D+03
4	-0.33041403D+04	0.00D+00	1	1	0.10D+01	0.00D+00	0.36D+03
5	-0.34527380D+04	0.00D+00	1	1	0.10D+01	0.00D+00	0.58D+01
6	-0.34559629D+04	0.00D+00	1	1	0.10D+01	0.00D+00	0.76D-01
7	-0.34560000D+04	0.00D+00	1	1	0.10D+01	0.00D+00	0.25D-04
8	-0.34560000D+04	0.36D-14	1	1	0.10D+01	0.00D+00	0.90D-10
9	-0.34560000D+04	0.00D+00	1	1	0.10D+01	0.00D+00	0.46D-09
10	-0.34560000D+04	0.00D+00	1	2	0.10D+00	0.00D+00	0.25D-10
11	-0.34560000D+04	0.36D-14	1	1	0.10D+01	0.00D+00	0.10D-11
12	-0.34560000D+04	0.00D+00	1	2	0.50D+00	0.00D+00	0.25D-14

--- Final Convergence Analysis at Best Iterate ---

```
Best result at iteration:
                            ITER =
                                         12
Objective function value:
                            F(X) = -0.34560000D+04
Approximation of solution:
                            х
  0.2400000D+02 0.1200000D+02 0.1200000D+02
Approximation of multipliers: U
                                 =
  0.14400000D+03 0.0000000D+00 0.000000D+00 0.000000D+00
  0.0000000D+00 0.000000D+00 0.000000D+00 0.000000D+00
                            G(X) =
Constraint values:
  0.0000000D+00 0.7200000D+02
Distance from lower bound:
                            XL-X =
  -0.2400000D+02 -0.1200000D+02 -0.1200000D+02
Distance from upper bound:
                            XU-X =
  0.1800000D+02 0.3000000D+02 0.3000000D+02
                             NFUNC =
Number of function calls:
                                         14
Number of gradient calls:
                             NGRAD =
                                         12
                                         12
Number of calls of QP solver: NQL
                                 =
```

3 Program Organization

All 306 test problems of the two collections [4] and [9] are available together with a test frame. A decision is made which of the runs is successful, and performance results are evaluated. With the default tolerances given, all problems can be solved successfully by the code NLPQLP, a new version of the SQP implementation NLPQL of the author [11].

Results of NLPQLP are discussed in the subsequent section.

The following files are provided by the author and can be downloaded from

http://www.uni-bayreuth.de/departments/math/~kschittkowski/home.htm

- 1. **PROB.FOR**: Fortran codes of the test problems of the two collectoins mentioned above.
- 2. **CONV.FOR**: Interface between the individual test problem codes and an available optimization routine to facilitate the calling procedure and to be able to execute all test problems within a loop. The subroutine is invoked by

CALL CONV(MODE)

where the test problem number is passed through the common block

COMMON/L8/NTP

- 3. **TESTP.FOR**: Test program that executes test problems in a loop. The calling sequence for the SQP code NLPQLP is included to give an example. Different approximation formulae for gradient evaluations are included. The code generates the output files listed below.
- 4. **TEST.DAT**: Output file of the test frame containing numerical results obtained by NLPQLP. Typical contants of TEST.DAT without lines generated by the NLP routine:

TP 1	2	0	0	0	26	19	178	0.00000000E+00	0.73114619E-10	0.73E-10	0.00E + 00
TP 2	2	0	0	0	20	15	140	0.50426188E-01	0.50426193E-01	0.11E-06	0.00E + 00
TP 3	2	0	0	0	10	10	90	0.00000000E+00	0.16103740E-19	0.16E-19	0.00E + 00
TP 4	2	0	0	0	2	2	18	0.26666667E + 01	0.26666667E + 01	0.00E + 00	0.00E + 00
TP 5	2	0	0	0	8	6	56	-0.19132230E+01	-0.19132230E+01	0.11E-10	0.00E + 00
TP 6	2	1	1	0	10	9	82	0.00000000E + 00	0.19130495E-12	0.19E-12	0.22E-04
TP 7	2	1	1	0	11	10	91	-0.17320508E + 01	-0.17320508E + 01	-0.18E-08	0.11E-07
TP 8	2	2	2	0	5	5	45	-0.1000000E + 01	-0.1000000E + 01	0.00E + 00	0.53E-04

The following data are listed, see TESTP.FOR for details:

NTP	Test problem number
Ν	Number of variables
ME	Number of equality constraints
Μ	Number of constraints
IFAIL	Convergence criterion
NF	Number of objective function evaluations
NDF	Number of gradient evaluations of objective function
NEF	Number of equivalent function evaluations, i.e. NF plus number of func-
	tion calls needed for gradient approximation
FEX	Exact objective function value
F	Computed objective function value
DFX	Relative error in objective function
DGX	Sum of constraint violations including bound violations

- 5. **TEST.TEX**: Same as above, but with Latex separators.
- 6. **RESULT.DAT**: The following summary is shown:
 - (a) Flag for evaluating gradients
 - (b) Tolerance for gradient approximation
 - (c) Termination accuracy for NLP routine
 - (d) Randomly generated error added to objective
 - (e) Total number of test runs
 - (f) Number of successful test runs
 - (g) Number of local solutions obtained
 - (h) Number of test runs with error message IFAIL>0
 - (i) Tolerance for determining successful return
 - (j) Average number of function evaluations
 - (k) Average number of gradient evaluations
 - (l) Average number of equivalent function calls
 - (m) Total execution time over all test runs (sec)
- 7. TEMP.DAT: Contains the same data in one row.

4 Numerical Results

The results of some computational tests are reported in this section. They have been obtained by the code NLPQLP [11], a Fortran implementation of a sequential quadratic programming algorithm. The Fortran subroutine NLPQLP solves smooth nonlinear programming problems and is an extension of the code NLPQL, see Schittkowski [8]. The new version is specifically tuned to run under distributed systems and to apply non-monotone line search in error situations. A new input parameter l is introduced for the number of parallel machines, that is the number of function calls to be executed simultaneously. In case of l = 1, NLPQLP is more or less identical to NLPQL.

Sequential quadratic programming or SQP methods belong to the most powerful nonlinear programming algorithms we know today for solving differentiable nonlinear programming problems of the form (1). The theoretical background is described for example by Stoer [13] in form of a review, or in Spellucci [12] in form of an extensive text book. From the more practical point of view, SQP methods are also introduced in the books of Papalambros, Wilde [6] and Edgar, Himmelblau [2]. Their excellent numerical performance is evaluated and compared to other methods in Schittkowski [7]. Since many years they belong to the most frequently used algorithms to solve practical optimization problems. Since analytical derivatives are not available for all problems, we approximate them numerically. The test examples are provided with exact solutions, either known from analytical solutions or from the best numerical data found so far. The Fortran codes are compiled by the Intel Visual Fortran Compiler, Version 9.1, under Windows XP64. Since the calculation times are very short, about one second for solving all test problems, we count only function and gradient evaluations. This is a realistic assumption, since for the practical applications, calculation times for evaluating model functions dominate and the numerical efforts within an optimization code are negligible.

First we need a criterion to decide whether the result of a test run is considered as a successful return or not. Let $\epsilon > 0$ be a tolerance for defining the relative termination accuracy, x_k the final iterate of a test run, and x^* the supposed exact solution as reported by the two test problem collections. Then we call the output of an execution of NLPQLP a successful return, if the relative error in objective function is less than ϵ and if the sum of all constraint violations less than ϵ^2 , i.e., if

$$f(x_k) - f(x^*) < \epsilon |f(x^*)|$$
, if $f(x^*) \neq 0$,

or

$$f(x_k) < \epsilon$$
, if $f(x^*) = 0$,

and

$$r(x_k) := \sum_{j=1}^{m_e} |g_j(x_k)| + \sum_{j=m_e+1}^m |\min(0, g_j(x_k))| < \epsilon^2 .$$

We take into account that NLPQLP returns a solution with a better function value than the known one, subject to the error tolerance of the allowed constraint violation. However, there is still the possibility that NLPQLP terminates at a local solution different from the one known in advance. Thus, we call a test run a successful one, if NLPQLP terminates with error message IFAIL=0, and if

$$f(x_k) - f(x^\star) \ge \epsilon |f(x^\star)|$$
, if $f(x^\star) \ne 0$,

or

$$f(x_k) \ge \epsilon$$
, if $f(x^*) = 0$,

and

$$r(x_k) < \epsilon^2$$

For our numerical tests, we use $\epsilon = 0.01$, i.e., we require a final accuracy of one per cent. NLPQLP is executed with termination accuracy $ACC=10^{-7}$, and MAXIT=500. Gradients are approximated by forward differences. Neither variables nor functions are scaled internally. All problems are executed with one and the same set of solution tolerances.

When executing NLPQLP for the 115 test examples of the first collection of Hock and Schittkowski [4], the following results are obtained:

:	1
:	0.1D-07
	0.1D-06
	$0.0D{+}00$
:	115
:	115
	0
:	7
	0
:	0.1D-01
:	26
:	16
	122
	0.12 (sec)

References

- Bongartz I., Conn A.R., Gould N., Toint Ph. (1995): CUTE: Constrained and unconstrained testing environment, Transactions on Mathematical Software, Vol. 21, No. 1, 123-160
- [2] Edgar T.F., Himmelblau D.M. (1988): Optimization of Chemical Processes, Mc-Graw Hill
- [3] Fourer R., Gay D.M., Kernighan B.W. (2002): AMPL: A Modeling Language for Mathematical Programming, Brooks/Cole Publishing Company
- [4] Hock W., Schittkowski K. (1981): Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer
- Hock W., Schittkowski K. (1983): A comparative performance evaluation of 27 nonlinear programming codes, Computing, Vol. 30, 335-358
- [6] Papalambros P.Y., Wilde D.J. (1988): Principles of Optimal Design, Cambridge University Press
- [7] Schittkowski K. (1980): Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 183 Springer
- [8] Schittkowski K. (1985/86): NLPQL: A Fortran subroutine solving constrained nonlinear programming problems, Annals of Operations Research, Vol. 5, 485-500
- [9] Schittkowski K. (1987): More Test Examples for Nonlinear Programming, Lecture Notes in Economics and Mathematical Systems, Vol. 182, Springer

- [10] Schittkowski K., Zillober C., Zotemantel R. (1994): Numerical comparison of nonlinear programming algorithms for structural optimization, Structural Optimization, Vol. 7, No. 1, 1-28
- [11] Schittkowski K. (2006): NLPQLP: A Fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search - user's guide, version 2.2, Report, Department of Computer Science, University of Bayreuth
- [12] Spellucci P. (1993): Numerische Verfahren der nichtlinearen Optimierung, Birkhäuser
- [13] Stoer J. (1985): Foundations of recursive quadratic programming methods for solving nonlinear programs, in: Computational Mathematical Programming, K. Schittkowski, ed., NATO ASI Series, Series F: Computer and Systems Sciences, Vol. 15, Springer

APPENDIX: Individual Results

The appendix contains a list of all test problems with the data

TP	test problem number,
Ν	number of variables,
ME	number of equality constraints,
М	number of constraints,
IFAIL	convergence criterion,
NF	number of objective function evaluations,
NDF	number of gradient evaluations of objective function,
NEF	number of equivalent function evaluations, i.e. NF plus number of func-
	tion calls needed for gradient approximation,
FEX	exact objective function value,
F	computed objective function value,
DFX	relative error in objective function,
DGX	sum of constraint violations including bound violations.

The performance results are obtained by NLPQLP under the conditions outlined in Section 4.

TP	N	ME	M	IFAIL	NF	NDF	NEF	FEX	F	DFX	DGX
1	2	0	0	0	26	19	64	0.00000000E+00	0.58256090E-10	0.58E-10	0.00E + 00
2	2	0	0	0	20	15	50	0.50426188E-01	0.50426193E-01	0.10E-06	0.00E + 00
3	2	0	0	0	10	10	30	0.00000000E+00	0.23971330E-17	0.24E-17	0.00E + 00
4	2	0	0	0	2	2	6	0.26666667E + 01	0.26666667E + 01	0.00E + 00	0.00E + 00
5	2	0	0	0	8	6	20	-0.19132230E + 01	-0.19132230E + 01	0.11E-10	0.00E + 00

(continued)

TP	N	ME	M	IFAIL	NF	NDF	NEF	FEX	F	DFX	DGX
6	2	1	1	0	10	9	28	0.00000000E+00	0.18671535E-12	0.19E-12	0.22E-04
7	2	1	1	0	11	10	31	-0.17320508E + 01	-0.17320508E+01	-0.86E-09	0.51E-08
8	2	2	2	0	5	5	15	-0.1000000E + 01	-0.1000000E + 01	0.00E + 00	0.53E-04
9	2	1	1	0	6	6	18	-0.5000000E+00	-0.5000000E+00	0.55E-09	0.18E-14
10	2	0	1	0	13	12	37	-0.1000000E + 01	-0.1000000E + 01	-0.45E-10	0.91E-10
11	2	0	1	0	10	9	28	-0.84984642E + 01	-0.84984642E + 01	-0.30E-12	0.84E-12
12	2	0	1	0	9	8	25	-0.3000000E + 02	-0.3000000E + 02	-0.58E-09	0.35E-07
13	2	0	1	0	42	42	126	0.1000000E + 01	0.1000001E + 01	0.98E-07	0.00E + 00
14	2	1	2	0	6	6	18	0.13934650E + 01	0.13934650E + 01	-0.10E-11	0.76E-12
15	2	0	2	0	3	3	9	0.30650001E + 01	0.30650000E + 01	-0.23E-07	0.19E-08
16	2	0	2	0	12	8	28	0.2500000E + 00	0.39820605E+01	0.15E + 02	0.00E + 00
17	2	0	2	0	20	17	54	0.1000000E + 01	0.1000000E + 01	0.28E-11	0.00E + 00
18	2	0	2	0	8	8	24	0.5000000E + 01	0.5000000E + 01	-0.11E-08	0.39E-07
19	2	0	2	0	7	7	21	-0.69618139E + 04	-0.69618139E + 04	-0.22E-14	0.36E-14
20	2	0	3	0	5	5	15	0.38198730E + 02	0.38198730E + 02	0.18E-09	0.00E + 00
21	2	0	1	0	3	2	7	-0.99960000E + 02	-0.99960000E+02	-0.89E-11	0.00E + 00
22	2	0	2	0	7	6	19	0.1000000E + 01	0.1000000E + 01	-0.22E-11	0.33E-11
23	2	0	5	0	7	7	21	0.2000000E + 01	0.2000000E + 01	0.30E-13	0.00E + 00
24	2	0	3	0	5	5	15	-0.10000000E + 01	-0.1000000E + 01	-0.17E-07	0.41E-07
25	3	0	0	0	1	1	4	0.00000000E+00	0.32835000E + 02	0.33E + 02	0.00E + 00
26	3	1	1	0	20	18	74	0.00000000E + 00	0.61599042 E-07	$0.62 \text{E}{-}07$	0.59E-04
27	3	1	1	0	37	22	103	0.4000000E + 01	0.4000000E + 01	0.42E-10	0.25E-12
28	3	1	1	0	5	4	17	0.00000000E+00	0.35555652E-13	0.36E-13	0.44E-07
29	3	0	1	0	13	12	49	-0.22627417E + 02	-0.22627417E + 02	-0.21E-09	0.69E-08
30	3	0	1	0	18	16	66	0.1000000E + 01	0.1000000E + 01	0.76E-09	0.00E + 00
31	3	0	1	0	12	7	33	0.6000000E + 01	0.6000000E+01	-0.51E-08	0.80E-08
32	3	1	2	0	3	3	12	0.1000000E + 01	0.1000000E + 01	$0.65 \text{E}{-}08$	0.33E-08
33	3	0	2	0	5	5	20	-0.45857864E + 01	-0.4000000E + 01	0.13E + 00	0.00E + 00
34	3	0	2	0	8	8	32	-0.83403245E+00	-0.83403245E+00	-0.12E-09	0.11E-08
35	3	0	1	0	7	7	28	0.111111111E + 00	0.111111111E + 00	0.54E-11	0.00E + 00
36	3	0	1	0	10	4	22	-0.33000000E+04	-0.33000000E+04	0.90E-14	0.00E + 00
37	3	0	2	0	12	10	42	-0.34560000E + 04	-0.34560000E+04	-0.15E-12	0.36E-11
38	4	0	0	0	111	84	447	0.00000000E+00	0.16953149E-08	0.17E-08	0.00E + 00
39	4	2	2	0	14	12	62	-0.10000000E+01	-0.1000000E+01	-0.41E-08	0.25E-08
40	4	3	3	0	6	6	30	-0.25000000E+00	-0.25000000E+00	-0.93E-09	0.43E-09
41	4	1	1	0	8	8	40	0.19259259E+01	0.19259259E+01	0.75E-10	0.10E-10
42	4	2	2	0	10	8	42	0.13857864E+02	0.13857864E + 02	-0.31E-08	0.17E-07
43	4	0	3	0	14	11	58	-0.44000000E+02	-0.44000000E+02	-0.35E-10	0.64E-09
44	4	0	6	0	6	6	30	-0.15000000E + 02	-0.15000000E + 02	-0.27E-08	0.27E-07
45	5	0	0	0	8	8	48	0.1000000E+01	0.1000000E+01	0.00E+00	0.00E+00
46	5	2	2	0	14	12	74	0.00000000E+00	0.55478753E-06	0.55E-06	0.19E-06
47	5	3	3	0	17	13	82	0.00000000E+00	0.46084429E-09	0.46E-09	0.93E-07
48	5	2	2	0	9	8	49	0.0000000E+00	0.27709272E-07	0.28E-07	0.80E-10
49	5	2	2	0	9	6	39	0.00000000E+00	0.22835655E-04	0.23E-04	0.15E-09
50	5	3	3	0	18	14	88	0.0000000E+00	0.31210594E-08	0.31E-08	0.11E-11
51	5	3	3	0	5	3	20	0.00000000E+00	0.23430051E-15	0.23E-15	0.19E-07
52	5	3	3	0	8	6	38	0.53266476E+01	0.53266476E+01	0.40E-10	0.55E-12
53	5	3	3	0	8	7	43	0.40930233E+01	0.40930233E+01	0.74E-08	0.51E-10
54	6			0	2	2	14	-0.90807476E+00	-0.72239851E-33	0.10E+01	0.14E-05
55 50	077	6	6	U	2	2	14	0.0333333E+01	0.00000007E+01	0.53E-01	0.15E-06
00 57	(4	4	U	11	9	74	-0.3400000E+01	-0.34500000E+01	-0.10E-07	0.24E-07
57	2	0	1	U	5	3	11	0.28459670E-01	0.30646306E-01	0.77E-01	0.00E+00
09 60	2	1	う 1	U	17	15	41	-U.18U42203E+U1	-U.0/04000E+01	0.135+00	0.005+00
0U C1	ა ი	1	1	U	11	10	41	0.32008200E-01	0.32008200E-01	0.23E-08	0.07E-08
01 69	び 2	2	2	0	8	10	29	-0.14304014E+03	-0.14304014E+03	-0.11E-09	0.18E-07
02 C2	ა ე	1	1	0	14	10	44	-0.20272014E+00	-0.20272014E+00	-0.09E-12	U.18E-13
63	3	2	2	0	10	9	37	0.96171517E+03	0.96171517E+03	0.32E-11	0.78E-11

(continued)

TP	N	ME	M	IFAIL	NF	NDF	NEF	FEX	F	DFX	DGX
64	3	0	1	0	49	33	148	0.62998424E + 04	0.62998424E + 04	-0.52E-10	0.17E-10
65	3	0	1	0	8	8	32	0.95352886E + 00	0.95352882E + 00	-0.42E-07	0.54E-06
66	3	0	2	0	7	7	28	0.51816327E + 00	0.51816327E + 00	-0.22E-08	0.31E-08
67	3	0	14	0	20	20	80	-0.11620365E + 04	-0.11620365E + 04	-0.15E-07	0.00E + 00
68	4	2	2	0	40	26	144	-0.92042502E + 00	-0.92042504E + 00	-0.18E-07	0.11E-06
69	4	2	2	0	50	32	178	-0.95671289E + 03	-0.95671289E + 03	0.43E-09	0.11E-10
70	4	0	1	0	37	34	173	0.74984636E-02	0.74984827E-02	0.26E-05	0.00E + 00
71	4	1	2	0	5	5	25	0.17014017E + 02	0.17014017E + 02	-0.26E-08	0.22E-08
72	4	0	2	0	22	22	110	0.72767938E + 03	0.72767936E + 03	-0.25E-07	0.11E-11
73	4	1	3	0	5	5	25	0.29894378E + 02	0.29894378E + 02	0.62E-10	0.35E-11
74	4	3	5	0	10	10	50	0.51264981E + 04	0.51264981E + 04	0.50E-10	0.15E-09
75	4	3	5	0	9	9	45	0.51744129E + 04	0.51744127E + 04	-0.37E-07	0.27E-11
76	4	0	3	0	6	6	30	-0.46818182E+01	-0.46818182E+01	0.49E-10	0.00E + 00
77	5	2	2	0	16	15	91	0.24150513E + 00	0.24150513E + 00	-0.14E-07	0.35E-07
78	5	3	3	0	8	8	48	-0.29197004E+01	-0.29197004E+01	0.50E-10	0.29E-11
79	5	3	3	0	10	9	55	0.78776821E-01	0.78776822E-01	0.10E-07	0.30E-07
80	5	3	3	0	7	7	42	0.53949848E-01	0.53949847E-01	-0.73E-08	0.72E-08
81	5	3	3	0	8	8	48	0.53949848E-01	0.53949846E-01	-0.28E-07	0.27E-07
83	5	0	6	0	5	5	30	-0.30665539E + 05	-0.30665539E + 05	-0.27E-11	0.00E + 00
84	5	0	6	0	10	10	60	-0.52803351E + 02	-0.52803351E + 02	-0.29E-10	0.93E-14
85	5	0	38	0	91	56	371	-0.19051338E+01	-0.19051553E+01	-0.11E-04	0.15E-06
86	5	0	10	0	6	5	31	-0.32348679E + 02	-0.32348679E+02	0.20E-09	0.11E-15
87	6	4	4	0	20	16	116	0.89275977E + 04	0.89275977E + 04	0.60E-10	0.54E-08
88	2	0	1	0	24	18	60	0.13626568E + 01	0.13626907E + 01	0.25E-04	0.26E-12
89	3	0	1	0	42	27	123	0.13626568E + 01	0.13626907E + 01	0.25E-04	0.45E-11
90	4	0	1	0	59	26	163	0.13626568E + 01	0.13626907E + 01	0.25E-04	0.20E-11
91	5	0	1	0	47	33	212	0.13626568E + 01	0.13626909E + 01	0.25E-04	0.13E-10
92	6	0	1	0	50	36	266	0.13626568E + 01	0.13626907E + 01	0.25E-04	0.00E + 00
93	6	0	2	0	15	12	87	0.13507596E + 03	0.13507596E + 03	0.12E-07	0.41E-09
95	6	0	4	0	2	2	14	0.15619514E-01	0.15619525E-01	0.69E-06	0.18E-08
96	6	0	4	0	2	2	14	0.15619513E-01	0.15619525E-01	0.76E-06	0.18E-08
97	6	0	4	0	7	7	49	$0.31358091E{+}01$	$0.31358091E{+}01$	-0.29E-08	0.35E-07
98	6	0	4	0	7	7	49	0.31358091E + 01	$0.31358091E{+}01$	-0.29E-08	0.35E-07
99	7	2	2	0	279	46	601	-0.83107989E + 09	-0.83107989E + 09	0.71E-11	0.17E-09
100	7	0	4	0	20	14	118	0.68063006E + 03	0.68063006E + 03	0.11E-09	0.25E-07
101	7	0	6	0	70	42	364	0.18097648E + 04	0.18097648E + 04	0.51E-11	0.17E-11
102	7	0	6	0	52	36	304	0.91188057E + 03	0.91188057E + 03	0.10E-09	0.39E-12
103	7	0	6	0	46	31	263	0.54366796E + 03	0.54366796E + 03	0.75E-10	0.86E-12
104	8	0	6	0	16	16	144	$0.39511634E{+}01$	$0.39511634E{+}01$	0.44E-09	0.57E-08
105	8	0	1	0	53	46	421	0.11384162E + 04	0.11384185E + 04	0.20E-05	0.00E + 00
106	8	0	6	0	609	226	2417	0.70493309E + 04	0.70492480E + 04	-0.12E-04	0.16E-06
107	9	6	6	0	8	8	80	$0.50550118E{+}04$	$0.50550114E{+}04$	-0.70E-07	0.74E-13
108	9	0	13	0	13	13	130	-0.86602540E + 00	-0.86602540E + 00	-0.81E-09	0.16E-08
109	9	6	10	0	56	19	227	0.53620693E + 04	0.53620692E + 04	-0.18E-07	0.57E-12
110	10	0	0	0	12	8	92	-0.45778470E + 02	-0.45778470E + 02	0.41E-09	0.00E + 00
111	10	3	3	0	51	51	561	-0.47761090E + 02	-0.47761091E + 02	-0.13E-07	0.12E-09
112	10	3	3	0	39	21	249	-0.47761086E + 02	-0.47761091E + 02	-0.10E-06	0.33E-11
113	10	0	8	0	16	13	146	0.24306209E + 02	0.24306209E + 02	0.16E-09	0.24E-08
114	10	3	11	0	42	33	372	-0.17688070E + 04	-0.17688070E + 04	-0.16E-09	0.23E-12
116	13	0	15	0	100	68	984	$0.97588409E{+}02$	$0.97587510E{+}02$	-0.92E-05	0.17E-08
117	15	0	5	0	16	16	256	0.32348679E + 02	0.32348679E + 02	0.49E-09	0.00E + 00
118	15	0	29	0	20	20	320	$0.66482045E{+}03$	0.66482045E + 03	0.11E-10	0.00E + 00
119	16	8	8	0	30	16	286	0.24489970E + 03	0.24489970E + 03	-0.13E-10	0.57E-09

APPENDIX: Test Problems of the First Collection

Purpose of this appendix is to list a detailed description of all test problems published in the monograph [4], which is out of print. We proceed from the nonlinear program (1) and list the following data of an example:

PROBLEM:	test problem number
CLASSIFICATION:	classification number in the form OCD-Kr-s ac-
	cording to the scheme given below
NUMBER OF VARIABLES:	number of variables n
NUMBER OF CONSTRAINTS:	number of inequality constraints, m_1 , number of
	equality constraints, i.e., $m - m_1$, and number of
	variable bounds of variables, b
OBJECTIVE FUNCTION:	analytical expressions for objective function $f(x)$
CONSTRAINTS:	analytical expressions for constraints $g_i(x), j =$
	$1,\ldots,m$
START:	starting values for variables, x_0 , and corresponding
	objective function value, $f(x_0)$, together with an
	information whether x_0 is feasible or not
SOLUTION:	information about optimal solution x^* , i.e.,
	- objective function value $f(x^{\star})$
	- constraint violation, $r(x^{\star})$
	- norm of gradient of Lagrange function
	- number of active constraints, μ
	- active constraints, $I(x^{\star})$
	- degree of degeneracy, $u_{max}^{\star}/u_{min}^{\star}$
	- condition number of projected Hessian of La-
	grange function, $\lambda_{max}^{\star}/\lambda_{min}^{\star}$

The general form of the classification scheme is

OCD-Kr-s

with

- O objective function
- C constraints
- D regularity
- K information about solution, i.e., whether an exact solution is known or not
- r order of partial derivatives
- s serial number within a class

The purpose of the classification scheme is to characterize the mathematical structure of objective function and constraints, and to give more information about the implementation and the solution. A problem is called a regular one, if first and second derivatives

exist in the feasible region for all problem functions, otherwise an irregular one. The subsequent abbreviations are used:

class	key	description
0	С	constant function
	L	linear function
	Q	quadratic function
	\mathbf{S}	sum of squares
	Р	generalized polynomial function
	G	general function
С	U	unconstrained problem
	В	only upper and lower bounds
	L	linear functions
	Q	quadratic functions
	Р	generalized polynomial functions
	G	general functions
D	R	regular problem
	Ι	irregular problem
Κ	Т	exact solution known (theoretical problem)
	Р	exact solution not known (<i>practical problem</i>)
r	0	derivatives not implemented
	1	first derivatives implemented

For some test problems, we cannot describe objective or constraint functions just by a few analytical expressions. In these cases, program fragments are attached at the end of this section together with more extensive information about a test problem, e.g., constant data, starting or solution values.

The subsequent pages are xeroxed copies of the original publication.

PROBLEM:		1								
CLASSIFICA	TION:	PBR-T1-1								
SOURCE:		Betts [8]								
NUMBER OF	VARIABLES:	n = 2								
NUMBER OF	CONSTRAINTS:	$m_1 = 0$, $m - m_1 = 0$, b = 1							
OBJECTIVE	FUNCTION:									
	f(x) = 100($(x_2 - x_1^2)^2 + (1 - x_1)^2$								
CONSTRAINTS:										
START:	-1.5 ≤ x ₂	(-2 , 1)	(feasible)							
START:	$x_0 = f(x) =$	(-2, 1)	(leasible)							
SOLUTION:	$x^{*} =$ $f(x^{*}) =$ $r(x^{*}) =$ $e(x^{*}) =$ $\mu =$ $I(x^{*}) =$ $u_{max}^{*}/u_{min}^{*} =$ $\lambda_{max}^{*}/\lambda_{min}^{*} =$	(1 , 1) 0 - 0 - 25E 4								

PROBLEM:			2						
CLASSIFICA	ATION:		PBR-T1-2						
SOURCE:			Betts [8]						
NUMBER OF	VARIABLES:		n = 2						
NUMBER OF	CONSTRAINT	S:	m ₁ = 0	, m-m ₁	= 0	, b = 1			
OBJECTIVE	FUNCTION:								
	f(x) = 10	0(x	$(2 - x_1^2)^2 +$	(1 – x.)2				
			East I						
CONSTRAINT	:S :								
	$1.5 \le x_2$								
START:	. x _o	=	(-2 , 1)		((not feasible)			
	$f(x_0)$	=	909						
SOLUTION:	X*	н	$(2a \cos(\frac{1}{3} \operatorname{arc}))$	$\cos\frac{1}{b}$,	1.5)				
	f(x*)	=	.05042 61879	5		1/2			
	r(x*)	=	0		a = (<u></u>	598/1200) ^{1/2}			
	e(x*)	=	.13E-7		b = 4(00 a ⁷			
	μ	Ξ	1						
	I(x*)	=	(1)						
	u* /u*.	=	.1833/.1833 =	= 1					
	max' min λ* /λ*.	=	200/200 = 1						
	'max' 'min	-	200/200 - 1						

PROBLEM:			3						
CLASSIFIC	ATION:		QBR-T1-1						
SOURCE:			Schuldt [56]						
NUMBER OF	VARIABLES:		n = 2						
NUMBER OF	CONSTRAINT	S:	$m_1 = 0$, $m - m_1 = 0$, b = 1					
OBJECTIVE	FUNCTION:								
*									
	$f(x) = x_2$	+	$10^{-5}(x_2 - x_1)^2 =$						
CONCEDATIN	ng .								
CONSTRAIN									
	$0 \le x_2$								
START:	X	=	(10 . 1)	(feasible)					
	$f(x_0)$	=	1.00081	(20002220)					
SOLUTION .	~**	_	(0, 0)						
Dong I tow.	f(x*)	_	0						
	$r(x^*)$	=	0	и.					
	e(x*)	=	0						
	μ	=	1						
	I(x*)	=	(1)						
	u*_/u*	=	1.0000/1.0000 = 1						
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	.20E-4/.20E-4 = 1						

ſ									
PROBLEM:			4						
CLASSIFIC	ATION:		PBR-T1-3						
SOURCE:			Asaadi [1]						
NUMBER OF	VARIABLES:		n = 2						
NUMBER OF	CONSTRAINT	S:	$m_1 = 0$, $m - m_1 =$	0 , b = 2					
OBJECTIVE	FUNCTION:								
	$f(x) = \frac{1}{3}$	(x ₁	+ 1) ³ + x ₂						
CONSTRAINT	IS:								
	$1 \leq x_1$								
	$0 \leq x_0$								
	2								
START:	x	=	(1,125, 125)	(fessible)					
	$f(\mathbf{x})$	=	3-323568	(10401010)					
COLUMITON	= (0,								
SOLUTION:	X*	=	(1,0)						
	I(X*)	Π	8/3						
	r(x*)	П	0						
	e(x*)	=	0						
	μ	=							
	⊥(x*)	=	(1,2)						
	u* /u* min	Ш	4.0000/1.0000 = 4.00						
	$\lambda_{\max}^*/\lambda_{\min}^*$	=							

PROBLEM:		5	
CLASSIFIC	CATION:	GBR-T1-1	
SOURCE:		McCormick [41]	
NUMBER OF	F VARIABLES:	n = 2	na na ann an Anna an A
NUMBER OF	CONSTRAINTS:	$m_1 = 0$, $m - m_1 = 0$, b = 4
OBJECTIVE	E FUNCTION:		
	f(x) = sin(x)	$(x_1 + x_2) + (x_1 - x_2)^2 - 1.5x_1$	+ 2.5x ₂ + 1
CONSTRAIN	TS:		
	-1.5 < x <	Λ	
	1.7 - 1 -	4	
	$-3 \le x_2 \le 3$		
START:	x=	(0,0)	(feasible)
	$f(x_0) =$	1	(10451010)
SOLUTION:		(_ Π , 1 π 1)	
	f(x*) -	$\frac{3}{2}, \frac{7}{2}, \frac{7}{3}, \frac{7}{2}$	
	$r(x^*) =$	- <u>2</u> v - <u>3</u>	
	$P(\mathbf{x}^*) = $	U	
	e(x.,) =	_	
	= ×	U	
	$\perp(X^{\star}) =$	_	
	u _{max} /u _{min} =	-	
	$\lambda_{\max}^*/\lambda_{\min}^* = \lambda_{\max}^*/\lambda_{\min}^*$	4.00/1.73 = 2.31	

<u>г</u>		-				
PROBLEM:			6			
CLASSIFIC	ATION:		QQR-TI-1			
SOURCE:			Betts [8]			
NUMBER OF	VARIABLES:		n = 2			
NUMBER OF	CONSTRAINT	S:	m ₁ = 0	$, m-m_1 = 1$,	b = 0
OBJECTIVE	FUNCTION:					
	f(x) =	(1	$-x_1)^2$			
CONSTRAINT	CS :					
	10(x ₂ - x	1 ²)	= 0			
START:	xo	=	(-1.2 , 1)		(not	feasible)
-	$f(x_0)$	=	4.84			
SOLUTION:	x*	=	(1 , 1)			
	f(x*)	=	0			
	r(x*)		0			
	e(x*)	=	0			
	μ	=	0			
	I(x*)	=	-			
	u*	=	0			
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	.40/.40 = 1			

DRORTEM.									
I NODUEN:		7							
CLASSIFIC	ATION:	GPR-T1-1	GPR-T1-1						
SOURCE:	а 	Miele e.al	Miele e.al. [44,45]						
NUMBER OF	VARIABLES:	n = 2							
NUMBER OF	CONSTRAINTS	$5: m_1 = 0$	$, m-m_1 = 1$, b = 0					
OBJECTIVE	FUNCTION:								
х. 									
	f(x) = 1	$\ln(1 + x_1^2) -$	x ₂						
CONSTRAIN	rs:								
	$(1 + x_1^2)^2$	$x^{2} + x_{2}^{2} - 4 =$: O						
START:									
	xo	= (2 , 2)		(not feasible)					
	x _o f(x _o)	= (2, 2) = ln 5 - 2		(not feasible)					
SOLUTION:	x _o f(x _o) x*	= (2, 2) = ln 5 - 2 = (0, $\sqrt{3}$)		(not feasible)					
SOLUTION:	x ₀ f(x ₀) x* f(x*)	= (2, 2) = ln 5 - 2 = (0, $\sqrt{3}$) = - $\sqrt{3}$		(not feasible)					
SOLUTION:	x ₀ f(x ₀) x* f(x*) r(x*)	= (2, 2) = ln 5 - 2 = (0, $\sqrt{3}$) = $-\sqrt{3}$ = 0		(not feasible)					
SOLUTION:	x ₀ f(x ₀) x* f(x*) r(x*) e(x*)	= (2, 2) = ln 5 - 2 = (0, $\sqrt{3}$) = - $\sqrt{3}$ = 0 = .21E-24		(not feasible)					
SOLUTION:	x ₀ f(x ₀) x* f(x*) r(x*) e(x*) u	= (2, 2) = ln 5 - 2 $= (0, \sqrt{3})$ = - $\sqrt{3}$ = 0 = .21E-24 = 0		(not feasible)					
SOLUTION:	x _o f(x _o) x* f(x*) r(x*) e(x*) µ I(x*)	= (2, 2) = ln 5 - 2 $= (0, \sqrt{3})$ = $-\sqrt{3}$ = 0 = .21E-24 = 0 = -		(not feasible)					
SOLUTION:	x _o f(x _o) x* f(x*) r(x*) e(x*) u I(x*) u max [/] u [*] min	$= (2, 2)$ $= \ln 5 - 2$ $= (0, \sqrt{3})$ $= -\sqrt{3}$ $= 0$ $= .21E-24$ $= 0$ $= -$ $= .2887/.288$	7 = 1	(not feasible)					

PROBLEM:			8									
CLASSIFIC	ATION:		COI	R-T1-	.1							
SOURCE:			Bet	tts [8]							
NUMBER OF	VARIABLES:		n =	= 2								
NUMBER OF	CONSTRAINT	S :	m ₁	= 0			, m-n	1 ₁ =	2		, b	= 0
OBJECTIVE	FUNCTION:		,					1				
	f(x) =	-1										
												-
CONSTRAINT	IS :											
	$x_1^2 + x_2^2$	-	25	= 0								
	$x_1 x_2 - 9$	_	0									
START:	xo	П	(2	, 1)						(not	feas	sible)
	f(x ₀)	=	-1		and the second second							
SOLUTION:	X*	=	(a	$, \frac{9}{a})$	9	(-a	$,-\frac{9}{a})$, (b,	$\frac{9}{b}$),	(-b	$, -\frac{9}{b})$
	f(x*)	=	-1						-	1		
	$r(x^*)$	=	0				a =	$\sqrt{\frac{2}{2}}$	5 +	√ <u>301</u> 2		
	e(x*)	Ξ	0				h	2	5 -	√301		
	μ	=	0				0 =	~ _	1	2		
	I(x*)	=	_									
	u* /u* min	=	0									
	$\lambda_{\max}^{\star}/\lambda_{\min}^{\star}$	=	-									

PROBLEM:			Q						
CLASSIFICA	TTON:		GT.B-T-1						
SOURCE:			Miele e.al. [44]						
NUMBER OF	VARIABLES:		n = 2						
NUMBER OF	CONSTRAINT	S:	$m_{1} = 0$, $m - m_{1}$	= 1(1)	, b = 0				
OBJECTIVE	FUNCTION:								
	f(x) =	sin	$(\pi x_1/12) \cos(\pi x_2/16)$						
CONSTRAINT	:S :								
	$4x_1 - 3x_2$	=	0						
START:	x _o	=	(0,0)	t)	feasible)				
	$f(x_0)$	=	0						
SOLUTION:	x*	=	(12k - 3, 16k - 4)	, k=0, 1	±1, ±2,				
	f(x*)	=	5						
	r(x*)	=	0						
	e(x*)	=	•73E-12						
	μ	=	0						
	I(x*)	=	-						
	u*	=	.03272/.03272 = 1						
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	.049/.049 = 1						

[
PROBLEM:		10								
CLASSIFIC	ATION:	LQR-T1-1								
SOURCE:		Biggs [10]								
NUMBER OF	VARIABLES:	n = 2								
NUMBER OF	CONSTRAINTS	$m_1 = 1$, $m - m_1 = 0$, b = 0							
OBJECTIVE	FUNCTION:									
	$f(x) = x_1 - x_2$									
CONSTRAINT	rs:									
	$-3x_1^2 + 2x_2$	$x_2 - x_2^2 + 1 \ge 0$								
START:	x ₀ =	(-10 , 10)	(not feasible)							
	f(x _o) =	-20								
SOLUTION:	X* =	(0,1)								
	f(x*) =	-1								
	r(x*) =	0								
	e(x*) =	•92E-11								
	μ =	1								
	I(x*) =	(1)								
	u* /u* =	.5000/.5000 = 1								
	$\lambda_{\max}^*/\lambda_{\min}^* =$	1.00/1.00 = 1								

		-						and the second second second
PROBLEM:			11					
CLASSIFICA	TION:		QQR-T1-2					
SOURCE:			Biggs [10]					
NUMBER OF	VARIABLES:		n = 2					
NUMBER OF	CONSTRAINTS	5:	m ₁ = 1	, m-1	^m 1 =	0	, b = 0	
OBJECTIVE	FUNCTION:							
	f(x) = ((x ₁	$(-5)^2 + x_2^2 -$	25		-		
CONSTRAINT	S:							
	$-x_1^2 + x_2$	2	0		-			
START:	xo	=	(4.9,.1).			(n	ot feasi	ble)
	f(x _o)	=	-24.98					
SOLUTION:	x*	=	$((a - \frac{1}{2})/\sqrt{6},$	(a ²	- 2	+ a ⁻²)/	6)	
	f(x*)	=	-8.49846 4223					
	r(x*)	=	0		8 =	7.5./6 +	338.5	
	e(x*)	=	.17E-9		C.	1.000	N)) U •)	
	μ	=	1					
	I(x*)	=	(1)					
	u* /u* min	=	3.0493/3.0493	= 1				
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	2.86/2.86 = 1					

T TO D THUI		1	2					
CLASSIFICATION:		Q	QQR-T1-3					
SOURCE:		Μ	line e.al. [46]					
NUMBER OF	VARIABLES:	n	. = 2					
NUMBER OF	CONSTRAINTS	5: m	$m_1 = 1$, $m - m_1 = 0$, b = 0				
OBJECTIVE	FUNCTION:							
	f(x) = .	5x1 ²	$+ x_2^2 - x_1 x_2 - 7 x_1 - 7 x_2$					
CONSTRAINT	S:							
	05 4 2		2 0					
	$25 - 4x_1$	- x ₂	\geq 0					
START:	X	= (0,0)	(feasible				
START:	×o	= (0,0)	(feasible				
START:	x _o f(x _o)	= (= 0	0,0)	(feasible				
START: SOLUTION:	x _o f(x _o) x*	= (= 0 = (0,0)	(feasible				
START: SOLUTION:	x ₀ f(x ₀) x* f(x*)	= (= 0 = (0,0) (2,3) -30	(feasible				
START: SOLUTION:	<pre>x₀ f(x₀) x* f(x*) r(x*)</pre>	= (= 0 = (= -	0,0) (2,3) -30	(feasible				
START: SOLUTION:	<pre>x₀ f(x₀) x* f(x*) r(x*) e(x*)</pre>	= (= 0 = (= - = 0 = .	0,0) (2,3) -30) .81E-10	(feasible				
START: SOLUTION:	<pre>x₀ f(x₀) x* f(x*) r(x*) e(x*) e(x*) µ</pre>	= (= 0 = (= - = 0 = . = 1	0,0) (2,3) -30) .81E-10	(feasible				
START: SOLUTION:	<pre>X₀ f(x₀) x* f(x*) r(x*) e(x*) µ I(x*)</pre>	= (= 0 = (= - = 0 = . = . = .	0, 0) (2, 3) -30) .81E-10 (1)	(feasible				
START: SOLUTION:	<pre>x₀ f(x₀) x* f(x*) r(x*) e(x*) u I(x*) umax[/]umin</pre>	= (= 0 = (= - = 0 = . = .	(2, 3) -30 (1) (5000/.5000 = 1	(feasible				

Non-Stranger States and

ſ								
PROBLEM:		100 × 10	13					
CLASSIFICA	TION:		QPR-T1-1					
SOURCE:			Betts [8], Kuhn, Tucker [38]				
NUMBER OF	VARIABLES:		n = 2					
NUMBER OF	CONSTRAINTS	3:	m ₁ = 1	$, m-m_1 = 0 , b = 2$				
OBJECTIVE	FUNCTION:							
	f(x) = ((x ₁	- 2) ² +	x ₂ ²				
CONSTRAINT	15:							
	$(1 - x_1)^3$	-	x ₂ ≥ 0					
	$0 \leq x$							
	0 - 11							
	$0 \le x_2$							
START:	X	Ξ,	(-2 , -	2) (not feasible)				
	$f(x_0)$	=	20					
SOLUTION:		=	(1, 0)					
500000	f(x*)	=	1					
	r(x*)	=	0					
	e(x*)	=	2	(constraint qualification				
	μ	=	2	not satisfied)				
	I(x*)	=	(1,3)					
	u* /u* in	==	0/0					
	$\lambda_{\max}^*/\lambda_{\min}^*$	=						

DDODIEM.			1 /
I RUDLEM:	TT TON -		
CLASSIFIC	ATION:		QQR-TI-4
SOURCE:	В	rac	ken, McCormick [13], Himmelblau [29]
NUMBER OF	VARIABLES:		n = 2
NUMBER OF	CONSTRAINT	S:	$m_1 = 1$, $m-m_1 = 1(1)$, $b = 0$
OBJECTIVE	FUNCTION:		
	f(x) =	(x ₁	$(x_2 - 1)^2 + (x_2 - 1)^2$
CONSTRAINT	'S :		
	25x ₁ ² -	x 2	2 + 1 ≥ 0
	x = 2x	+ 1	= 0
	12		
START:	x _o	=	(2, 2) (not feasible)
	$f(x_0)$	=	1
SOLUTION:	x*	=	$(.5(\sqrt{7} - 1), .25(\sqrt{7} + 1))$
	f(x*)	=	9 - 2.875√7
	r(x*)	=	0
	e(x*)	=	0
	μ	=	1
	I(x*)	=	(1)
	u* /u*	=	1.8466/1.5945 = 1.15
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	-

		and the second of				
PROBLEM:			15			
CLASSIFICA	ATION:		PQR-T1-1			
SOURCE:			Betts [8]			
NUMBER OF	VARIABLES:		n = 2			
NUMBER OF	CONSTRAINT	5:	m ₁ = 2 ,	$m - m_1 = 0$,	b = 1
OBJECTIVE	FUNCTION:		E.			
	f(x) = -	100	$(x_2 - x_1^2)^2 + (1)$	- x ₁) ²		
CONSTRAINT	IS :					
	$x_1 x_2 - 1$	2	0			
	$x_1 + x_2^2$	2	0			
	x ₁ ≤ .5					
START:	, x _o	=	(-2, 1)		(not	feasible)
	f(x _o)	=	909			
SOLUTION:	x*	=	(.5,2)			
	f(x*)	=	306.5			
	r(x*)	=	0			
	e(x*)	=	0			
	μ	=	2			
	I(x*)	=	(1,3)			
	u*_/u*	=	1751/700 = 2.50			
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	-			

PROBLEM:			16					
CLASSIFICA	TION:		PQR-T1-2					
SOURCE:			Betts [8]					
NUMBER OF	VARIABLES:		n = 2					
NUMBER OF	CONSTRAINTS	:	m ₁ = 2	$, m-m_1 = 0$, b = 3		
OBJECTIVE	FUNCTION:							
× :								
	f(x) = 1	00	$(x_2 - x_1^2)^2 +$	$(1 - x_1)^2$				
CONSTRAINT	S:	Sec. mar Alf						
	$x + x^2$	>	0					
	1 2	See.						
	$x_1^2 + x_2$	\geq	0					
- 21	-5 ≤ X.		≤ . 5					
	1		• 2					
	$x_2 \leq 1$							
START:	xo	Π	(-2 , 1)		(not	feasible)		
	$f(x_0)$	=	909					
SOLUTION:	X*	=	(.5 , .25)					
	f(x*)	=	.25					
	r(x*)	=	0					
	e(x*)	=	0					
	μ	=	1					
	I(x*)	П	(4)					
	u* max ^{/u*} min	=	1.0000/1.0000) = 1				
	$\lambda_{max}^*/\lambda_{min}^*$	=	200/200 = 1					

[
PROBLEM:		17						
CLASSIFICA	TION:	PQR-T1-3	PQR-T1-3					
SOURCE:		Betts [8]						
NUMBER OF	VARIABLES:	n = 2						
NUMBER OF	CONSTRAINTS:	m ₁ = 2	$, m-m_1 = 0$, b = 3				
OBJECTIVE	FUNCTION:							
	f(x) = 10	$0(x_2 - x_1^2)^2$	$+ (1 - x_1)^2$					
CONSTRAINT	5:							
STAPT .	$x_2^2 - x_1 \ge x_1^2 - x_2 \ge5 \le x_1$ $x_2 \le 1$	0 ≤ .5		(not feasible)				
START:	$x_0 = f(x_0) =$	(-2, 1) 909		(not feasible)				
SOLUTION:	$x^* =$ $f(x^*) =$ $r(x^*) =$ $e(x^*) =$ $\mu =$ $I(x^*) =$ $u_{max}^*/u_{min}^* =$ $\lambda_{max}^*/\lambda_{min}^* =$	(0,0) 1 0 2 (1,2) 2.0000/0						

.

PROBLEM:		1.000-01-0	18			
CLASSIFICA	TION:		QQR-T1-5			
SOURCE:			Betts [8]			
NUMBER OF	VARIABLES:		n = 2			
NUMBER OF	CONSTRAINTS	:	$m_1 = 2$, $m - m_1 = 0$)	, b = 4	
OBJECTIVE	FUNCTION:					
	f(x) = .	01	$x_1^2 + x_2^2$			
CONSTRAINT	S:					
	$x_1 x_2 - 25$ $x_1^2 + x_2^2$ $2 \le x_1$ $0 \le x_2$	2 I V V	25 ≥ 0 50 50			
START:	×o	=	(2,2)	(not	feasible)	
	$f(x_0)$	=	4.04			
SOLUTION:	X*	=	$(\sqrt{250}, \sqrt{2.5})$			
	f(x*)	=	5			
	r(x*)	н	0			
	e(x*)	=	•24E-9			
	μ	=	1			
	I(x*)	=	(1)			
	u*		.2000/.2000 = 1			
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	.079/.079 = 1			
DRADTER		10				
-------------	-------------------------------------	-------------------------------------	--	--	--	--
PROBLEM:						
CLASSIFICA	FION:	PQK-TI-4				
SOURCE:		Betts [8], Gould [27]				
NUMBER OF	VARIABLES:	n = 2				
NUMBER OF (CONSTRAINTS	$m_1 = 2$, $m - m_1 = 0$, $b = 4$				
OBJECTIVE I	FUNCTION:					
	f(x) = (:	$(x_1 - 10)^3 + (x_2 - 20)^3$				
CONSTRAINT	S :					
	$(x_1 - 5)^2$	$(x_2 - 5)^2 - 100 \ge 0$				
	$-(x_2 - 5)^2$	$-(x_1 - 6)^2 + 82.81 \ge 0$				
	13 ≤ x ₁	≤ 100				
	0 ≤ x ₂	\$ 100				
START:	xo	= (20.1 , 5.84) (not feasible)				
	f(x ₀)	-1808.858296				
SOLUTION:	x*	= (14.095 , .84296079)				
	f(x*)	-6961.81381				
	r(x*)	= 0				
	e(x*)	= 0				
	μ	= 2				
	I(x*)	= (1, 2)				
	u* /u*	= 1229.5/1097.1 = 1.12				
	$\lambda_{\max}^*/\lambda_{\min}^*$					

I. Maria

					alaania disconalaaniin (mise yana)		
PROBLEM:		and the second	20				
CLASSIFICA	TION:		PQR-T1-5				
SOURCE:		-	Betts [8]				
NUMBER OF	VARIABLES:		n = 2				
NUMBER OF	CONSTRAINTS	5:	m ₁ = 3	$, m-m_1 = 0$)	, b = 2	
OBJECTIVE	FUNCTION:						
	f(x) = 1	00	$(x_2 - x_1^2)^2 +$	$(1 - x_1)^2$			
CONSTRAINT	15 :					n an	
	$x_1 + x_2^2$	\geq	0				
	2						
	$\mathbf{x}_1 + \mathbf{x}_2 \ge 0$						
	$x_1^2 + x_2^2 - 1 \ge 0$						
	$5 \le x_1 \le .5$						
START:	xo	=	(-2 , 1)		(not	feasible)	
	$f(x_0)$	=	909				
SOLUTION:	X*	=	(.5 , .5\/3)				
	f(x*)	=	81.5 - 25/3				
	r(x*)	=	0				
	e(x*)	=	0				
	μ	=	2				
	I(x*)	=	(3,5)				
	u*_/u*	=	195.34/71.132	2 = 2.75			
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	_				

PROBLEM	0.1								
CLASSIFI									
SOURCE	QUR-T1-1								
NIIMBER OT	Betts [8]								
NUMPER OF	F VARIABLES: $n = 2$								
OP IFORTH	$m_1 = 1(1)$, $m_1 = 0$, $b = 4$								
ODDECITAL	- FUNCTION:								
	$f(x) = .01x_1^2 + x_2^2 - 100$								
CONSTRAIN	TS:								
	$10x_1 - x_2 - 10 \ge 0$								
	$2 \le x_1 \le 50$								
	$-50 \le x_2 \le 50$								
ሮጥለ ውጥ •									
DIANI,.	$x_0 = (-1, -1)$ (not feasible)								
	$I(x_0) = -98.99$								
SOLUTION:	$x^* = (2, 0)$								
	$f(x^*) = -99.96$								
	$\mathbf{r}(\mathbf{x}^*) = 0$								
	$e(x^*) = 0$								
	$\mu = 1$								
	$I(x^*) = (2)$								
	$u_{\text{max}}^*/u_{\text{min}}^* = .04/.04 = 1$								
	$\lambda_{\max}^*/\lambda_{\min}^* = -$								

PROBLEM:			22			
CLASSIFICA	ATION:	Constant and	QQR-T1-6			
SOURCE:	Bracken, 1	McCo	ormick [13],	Himmelblau	[29],	Sheela [57]
NUMBER OF	VARIABLES:		n = 2			
NUMBER OF	CONSTRAINT	S:	$m_1 = 2(1)$	$, m-m_1 = 0$, b = 0
OBJECTIVE	FUNCTION:					
	f(x) =	(x ₁	- 2) ² + (x ₂	- 1) ²		
CONSTRAINI	'S :					
	-x, - x, -	+ 2	≥ 0			
	$-x_1^2 + x_2$	\geq	0			
START:	xo	=	(2,2)		(not	feasible)
	$f(x_0)$	=	1			
SOLUTION:	x*	=	(1, 1)			
	f(x*)	=	1			
	r(x*)	=	0			
	e(x*)	=	0			
	u	=	2			
	T(x*)	=	(1, 2)			
	11* /11*	_	.6666/.6666	= 1		
	max' min	_		t		
	"max/"min					

DDODIEM.		07					
PROBLEM:							
CLASSIFIC	ATION:	QQR-T1-7					
SOURCE:		Betts [8]					
NUMBER OF	VARIABLES:	n = 2					
NUMBER OF	CONSTRAINTS:	$m_1 = 5(1)$, $m - m_1 = 0$, b = 4				
OBJECTIVE	FUNCTION:						
	$f(x) = x_1^2$	$^{2} + x_{2}^{2}$					
CONSTRAINT	rs:						
	$x_1 + x_2 - 1$	≥ 0					
	$x_1^2 + x_2^2 -$	1 ≥ 0					
	$9x_1^2 + x_2^2 - 9 \ge 0$						
	$x_1^2 - x_2 \ge$	0					
	x ₂ ² - x ₁ ≥	0					
	-50 ≤ x _i	≤ 50 , i=1,2					
START:	x _o =	(3,1)	(not feasible)				
	f(x ₀) =	10					
SOLUTION:	x* =	(1 , 1)					
	f(x*) =	2					
	r(x*) =	0					
	e(x*) =	0					
	μ =	2					
	I(x*) =	(4,5)					
	u*/u* =	2/2 = 1					
	$\lambda_{\max}^*/\lambda_{\min}^* =$						

PROBLEM:		24	
CLASSIFIC	ATION:	PLR-T1-1	
SOURCE:		Betts [8], Box [12]	
NUMBER OF	VARIABLES:	n = 2	
NUMBER OF	CONSTRAINTS	$m_1 = 3(3)$, $m - m_1 = 0$, b = 2
OBJECTIVE	FUNCTION:		
	$f(x) = -\frac{1}{2}$	$\frac{1}{7\sqrt{3}} \left(\left(x_1 - 3 \right)^2 - 9 \right) x_2^3$	
CONSTRAIN	TS:		
	$x_1^{1/\sqrt{3}} - x_2^{1/\sqrt{3}}$	≥ 0	
	$x_1 + \sqrt{3}x_2$	≥ 0	
	$-x_1 - \sqrt{3}x_2$	+ 6 ≥ 0	
	0 ≤ x ₁		
	0 ≤ x ₂		
		а,	τ.
START:	x ₀ =	: (1 , .5)	(feasible)
	f(x ₀) =	01336459	•
SOLUTION:	x* =	$(3, \sqrt{3})$	
	f(x*) =	-1	
	r(x*) =	0	
	e(x*) =	0	
	μ =	2	
	I(x*) =	(1,3)	
	u*_/u*_ =	.86603/.5 = 1.73	
	$\lambda_{\max}^*/\lambda_{\min}^* =$	-	

[
PROBLEM:	25			
CLASSIFICATION:	SBR-T1-1			
SOURCE:	Holzmann [32], Himmelblau [29]			
NUMBER OF VARIABLES:	n = 3			
NUMBER OF CONSTRAINTS:	$m_1 = 0$, $m - m_1 = 0$, $b = 6$			
OBJECTIVE FUNCTION:				
$f(x) = \sum_{i=1}^{99}$	$(f_i(x))^2$			
$f_{i}(x)$	=01i + $exp(-\frac{1}{x_1}(u_1 - x_2)^{x_3})$			
u _i =	$25 + (-50 \ln(.01i))^{2/3}$			
	i = 1,,99			
CONSTRAINTS:				
.1 ≤ x ₁ ≤	100			
0 ≤ x ₂ ≤	25.6			
0 ≤ x ₃ ≤	5			
START: x ₀ = (100 , 12	.5, 3) $f(x_0) = 32.835$ (feasible)			
SOLUTION:	$f(\mathbf{x}^*) = 0$			
x * = (50, 25	, 1.5)			
$\mathbf{r}(\mathbf{x}^*) = 0$	e(x*) = -			
μ = 0	$I(x^*) = -$			
$u_{max}^{*}/u_{max}^{*} = -$				
$\lambda_{max}^* / \lambda_{min}^* = 94.7 / .14E$	-4 = .70E7			

ſ		
PROBLEM:		26
CLASSIFIC	ATION:	PPR-T1-1
SOURCE:		Huang, Aggerwal [34], Miele e.al. [43]
NUMBER OF	VARIABLES:	n = 3
NUMBER OF	CONSTRAINTS	$m_1 = 0$, $m - m_1 = 1$, $b = 0$
OBJECTIVE	FUNCTION:	
	f(x) = ($(x_1 - x_2)^2 + (x_2 - x_3)^4$
CONSTRAINT	ES:	
	$(1 + x_{0}^{2})x$	$+ x_{-}^{4} - 3 = 0$
	(1 2)	1 3
START:	x	= (-2.6 , 2 , 2) (feasible)
	f(x _o)	= 21.16
SOLUTION:	X*	$= (1, 1, 1) \cdot (a \cdot a \cdot a)$
	f(x*)	= 0
	r(x*)	= 0 $a = \sqrt[3]{\alpha - \beta} - \sqrt[3]{\alpha + \beta} - 2/3$
	e(x*)	$= 0 \qquad \alpha = \sqrt{139/108}$
	Ц	$= 0 \qquad \beta = 61/54$
	I(x*)	
	u* /u* min	= 0
	$\lambda_{\max}^*/\lambda_{\min}^*$	= 4/0

PROBLEM:			27		
CLASSIFIC.	ATION:		PQR-T1-6		
SOURCE:			Miele e.al. [44,45]	
NUMBER OF	VARIABLES:		n = 3		
NUMBER OF	CONSTRAINT	S:	$m_1 = 0$, m-m	1 ₁ = 1	, b = 0
OBJECTIVE	FUNCTION:				
	f(x) =	.01	$(x_1 - 1)^2 + (x_2 - x_1)^2$	2) ²	
CONSTRAIN	rs:				
	$x_1 + x_3^2$	+ 1	= 0		
START:	xo	=	(2,2,2)		(not feasible)
	f(x _o)	=	4.01		
SOLUTION:	X*	=	(-1, 1, 0)		
	f(x*)	П	.04		
	r(x*)	=	0		
	e(x*)	=	0		
	μ	=	0		
	I(x*)	=	-		
	u* /u* max min	_	.04/.04 = 1		
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	2/.08 = 25		

PROBLEM:		28
CLASSIFIC.	ATION:	QLR-T1-2
SOURCE:		Huang, Aggerwal [34]
NUMBER OF	VARIABLES:	n = 3
NUMBER OF	CONSTRAINTS:	$m_1 = 0$, $m - m_1 = 1(1)$, $b = 0$
OBJECTIVE	FUNCTION:	
	f(x) = (x ₁	$(x_2)^2 + (x_2 + x_3)^2$
CONSTRAIN	· IS:	
	x ₁ + 2x ₂ + 3	x ₃ - 1 = 0
START:	x ₀ = f(x ₀) =	(-4 , 1 , 1) (feasible) 13
SOLUTION:	X* =	(.5,5, .5)
	f(x*) =	0
	r(x*) =	0
	e(x*) =	0
	μ =	0
	I(x*) =	
	u*_/u*_ =	0
	$\lambda_{\max}^*/\lambda_{\min}^* =$	2.72/.42 = 6.45

		of the second second			
PROBLEM:			29		
CLASSIFIC A	ATION:		PQR-T1-7		
SOURCE:			Biggs [10]		
NUMBER OF	VARIABLES:		n = 3		
NUMBER OF	CONSTRAINTS	5 :	m ₁ = 1 ,	$m-m_1 = 0$,	b = 0
OBJECTIVE	FUNCTION:				
	f(x) = -	X	1 ^x 2 ^x 3		
CONSTRAINT	[S:				
	$-x_{1}^{2} - 2x_{2}^{2}$	2 _	$-4x_{7}^{2} + 48 \ge$	0	
	1 2		2		
START:	x	=	(1 , 1 , 1)	(feasibl	_e)
	f(x _o)	Ξ	-1		
SOLUTION:	X*	=	(a,b,c) , (a,-	o,−c) , (−a,b,−c)	9
	f(x*)	=	-16/2	(-a,-b,c)	
	r(x*)	=	0	a = 4	
	e(x*)	=	•19E-9	$b = 2\sqrt{2}$	
	μ	=	1	c = 2	
	I(x*)	=	(1)		
	u* /u*.	=	.7071/.7071 =	1	
	max' min	=	7.79/3.52 = 2.	22	
	'max' 'min	-	1 • 1)/) •) =	- -	

PROBLEM:		30		
CLASSIFICA	TION:	QQR-T1-8		
SOURCE:		Betts [8]		
NUMBER OF	VARIABLES:	n = 3		
NUMBER OF	CONSTRAINTS:	m ₁ = 1	$, m-m_1 = 0$, b = 6
OBJECTIVE	FUNCTION:			
	$f(x) = x_1^2$	$^{2} + x_{2}^{2} + x_{3}^{2}$		
CONSTRAINT	:S :	an a		
	$x_1^2 + x_2^2 -$	1 ≥ 0		
	1 ≤ x ₁ ≤	10		
	-10 ≤ x ₂	≤ 10		
	-10 ≤ x ₃	≤ 10		
ŞTART:	x ₀ =	(7,7,7)		(feasible)
	$I(x_0) =$	2		
SOLUTION:	X* =	(1,0,0)		
	f(x*) =	1		
	r(x*) =	0		
	e(x*) =	0		
	μ =	2		
	I(x*) =	(1,2)		
	u* /u* =	1/0		
	$\lambda_{\max}^*/\lambda_{\min}^* =$	2/2 = 1		

PROBLEM:		31				
CLASSIFICA	ATION:	QQR-T1-9				
SOURCE:		Betts [8]				
NUMBER OF	VARIABLES:	n = 3				
NUMBER OF	CONSTRAINTS	$m_1 = 1$, $m - m_1 = 0$, b = 6			
OBJECTIVE	FUNCTION:					
	f(x) = 9:	$x_1^2 + x_2^2 + 9x_3^2$				
CONSTRAINT	15 :					
	x ₁ x ₂ - 1	≥ 0				
	$-10 \le x_1 \le 10$					
	$1 \le x_2 \le 10$					
	$-10 \le x_3 \le 1$					
START:	x _o	= (1 , 1 , 1)	(feasible)			
	f(x _o) =	= 19				
SOLUTION:	x* :	$= (1/\sqrt{3}, \sqrt{3}, 0)$				
	f(x*)	= 6				
	r(x*) =	= 0				
	e(x*) :	57E-10				
	μ :	= 1				
	I(x*) :	= (1)				
	u*	= 6/6 = 1				
	$\lambda_{\max}^*/\lambda_{\min}^*$	= 18/7.2 = 2.5				

PROBLEM:		32
CLASSIFICA	ATION:	QPR-T1-2
SOURCE:		Evtushenko [25]
NUMBER OF	VARIABLES:	n = 3
NUMBER OF	CONSTRAINTS	$m_1 = 1$, $m_1 = 1(1)$, $b = 3$
OBJECTIVE	FUNCTION:	
	f(x) = ($(x_1 + 3x_2 + x_3)^2 + 4(x_1 - x_2)^2$
CONSTRAINT	rs:	
	6x ₂ + 4x ₃	$-x_1^3 - 3 \ge 0$
	$1 - x_1 - x_1$	$x_{3} - x_{3} = 0$
	0 ≤ x _i	, i = 1,2,3
START:	xo	= (.1 , .7 , .2) (feasible)
	$f(x_0)$	= 7.2
SOLUTION:	x*	= (0,0,1)
	f(x*)	= 1
	r(x*)	= 0
	e(x*)	= 0
	μ	= 2
	I(x*)	= (2,3)
	u*	= 4/0
	$\lambda_{\max}^*/\lambda_{\min}^*$	

PROBLEM:		33
CLASSIFIC.	ATION:	PQR-T1-8
SOURCE:		Beltrami [6], Hartmann [28]
NUMBER OF	VARIABLES:	n = 3
NUMBER OF	CONSTRAINTS:	$m_1 = 2$, $m - m_1 = 0$, $b = 4$
OBJECTIVE	FUNCTION:	
	f(x) = (x ₁	$-1)(x_1 - 2)(x_1 - 3) + x_3$
CONSTRAIN	rs:	
	$x_3^2 - x_2^2 - x_1^2 + x_2^2 + 0 \le x_1$ 0 \le x_1 0 \le x_2	$x_1^2 \ge 0$ $x_3^2 - 4 \ge 0$
	0 ≤ x ₃ ≤	5
START:	x ₀ =	(0,0,3) (feasible)
	f(x ₀) =	-3
SOLUTION:	$x^* =$ $f(x^*) =$ $r(x^*) =$ $e(x^*) =$ $\mu =$ $I(x^*) =$ $u_{max}^*/u_{min}^* =$ $\lambda_{max}^*/\lambda_{min}^* =$	$(0, \sqrt{2}, \sqrt{2})$ $\sqrt{2} - 6$ 0 3 (1, 2, 3) 11/.17678 = 62.23

PROE LEM:		34
CLASSIFIC	ATION:	LGR-T1-1
SOURCE:		Eckhardt [24]
NUMBER OF	VARIABLES:	$r_1 = 3$
NUMBER OF	CONSTRAINTS:	$m_1 = 2$, $m - m_1 = 0$, $b = 6$
OBJECTIVE	FUNCTION:	
	f(x) = -x	1
CONSTRATIN	Πς.	
CONDINAIN.		
	$x_{o} = exp(x_{o})$	$\rangle > 0$
	-2	
	$x_3 - exp(x_2)$	≥ 0
	0 < x ₁ <	100
	0 ≤ x ₂ ≤	100
	0 ≤ x ₃ ≤	10
START:	x ₀ =	(0 , 1.05 , 2.9) (feasible)
	f(x ₀) =	0
SOLUTION:	x* =	(ln(ln10) , ln10 , 10)
	f(x*) =	-ln(ln10)
	r(x*) =	0
	e(x*) =	0
	μ =	3
	I(x*) =	(1,2,8)
	u*_/u*_ =	.4343/.04343 = 10
	$\lambda_{\max}^*/\lambda_{\min}^* =$	-

PROBLEM:			35 (Beale's problem)	
CLASSIFICA	TION:		QLR-T1-3		
SOURCE: A	saadi [1],	Cha	ralambous [18], Dim	itru [23],	Sheela [57]
NUMBER OF	VARIABLES:	1	n = 3		
NUMBER OF	CONSTRAINTS	5 :	$m_1 = 1(1)$, $m-m_1$	= 0	, b = 3
OBJECTIVE	FUNCTION:				
	f(x) = g) —	$8x_1 - 6x_2 - 4x_3 + 2$	$x_1^2 + 2x_2^2$	+ x ₃ ²
	-	- 2x	$1^{x_{2}} + \frac{2^{x_{1}}}{1^{x_{3}}}$		
CONSTRAINT	52 :				
	3 - x ₁ - 3		$2x_3 \ge 0$		
			2		
	0 ≤ x _i	9	i=1,2,3		
START:	xo	=	(.5,.5,.5)	(feasi	ble)
	$f(x_0)$	=	2.25		
SOLUTION:	x*	=	(4/3 , 7/9 , 4/9)		
	$f(x^*)$	=	1/9		
	r(x*)	=	0		
	e(x*)	=	.49E-10		
	μ	=	1		
	I(x*)	=	(1)		
	u*	=	.2222/.2222 = 1		
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	3.72/1.61 = 2.31		

PROBLEM:			36
CLASSIFICA	TION:		PLR-T1-2
SOURCE:			Biggs [10]
NUMBER OF	VARIABLES:		n = 3
NUMBER OF	CONSTRAINTS	:	$m_1 = 1(1)$, $m-m_1 = 0$, $b = 6$
OBJECTIVE	FUNCTION:		
	f(x) = -	X	1 ^x 2 ^x 3
CONSTRAINT	'S :		
	72 - x ₁ -	2x	$2 - 2x_3 \ge 0$
	0 ≤ x ₁	≤	20
	0 ≤ x ₂	<	11
	0 ≤ x ₃	\leq	42
START:	xo	=	(10, 10, 10) (feasible)
	$f(x_0)$	=	-1000
SOLUTION:	X*	=	(20, 11, 15)
	$f(x^*)$	=	-3300
	$r(x^*)$	=	0
	e(x*)	=	0
	μ	=	3
	I(x*)	=	(1,5,6)
	u*_/u*_ max/umin	=	110/55 = 2
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	

PROBLEM:		37			
CLASSIFICA	TION:	PLR-T1-3			
SOURCE:		Betts [8], Box [12]			
NUMBER OF	VARIABLES:	n = 3			
NUMBER OF	CONSTRAINTS	$m_1 = 2(2)$, $m-m_1 = 0$, $b = 6$			
OBJECTIVE	FUNCTION:				
	f(x) = -	$x_1 x_2 x_3$			
CONSTRATION	S :				
0 ON DITIRIT					
	72 - x 2	$x_0 - 2x_7 \ge 0$			
	, <u></u>				
	$x_1 + 2x_2 + 2x_3 \ge 0$				
	0 ≤ x. :	42 , i=1,2,3			
	T				
START:	x	= (10 , 10 , 10) (feasible)			
	$f(x_0)$	= -1000			
SOLUTION:	 x*	= (24 , 12 , 12)			
	f(x*)	= -3456			
	r(x*)	= 0			
	e(x*)	= 0			
	μ	= 1			
	I(x*)	= (1)			
	u*	= 144/144 = 1			
	$\lambda_{\max}^*/\lambda_{\min}^*$	= 24/8 = 3			

PROBLEM:			38 (Colville No 4)		
CLASSIFICA	TTON.		PBR-T1-/		
SOURCE:			Colville [20] Himmelbley [20]		
NUMBER OF	VARTABLES:		n = 4		
NUMBER OF CONSTRAINTS:			m = 0 , $m = 0$, $b = 8$		
OBJECTIVE FUNCTION:					
f(x) =	$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2 + 90(x_4 - x_3^2)^2 + (1 - x_3)^2 + 10.1((x_2 - 1)^2 + (x_4 - 1)^2) + 19.8(x_2 - 1)(x_4 - 1)$				
CONSTRAINT	S :				
	-10 ≤ x _i ≤ 10 , i=1,,4				
START:	xo	=	(-3 , -1 , -3 , -1) (feasible)		
	$f(x_0)$	=	19192		
SOLUTION:	x*	=	(1 , 1 , 1 , 1)		
	f(x*)	Ξ	0		
	$r(x^*)$	=	0		
	e(x*)	=	_		
	μ	=	0		
	I(x*)	=			
	u*	=			
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	.10E4/.72 = .14E4		

PROBLEM:		39
CLASSIFIC	ATION:	LPR-T1-1
SOURCE:		Miele e.al. [44,45]
NUMBER OF	VARIABLES:	n = 4
NUMBER OF	CONSTRAINTS:	$m_1 = 0$, $m - m_1 = 2$, $b = 0$
OBJECTIVE	FUNCTION:	
	f(x) = -x	^c 1
CONCEDATIO		
CONDIKAIN'		
	× _ × ³ _ v	2 _ 0
	² ¹	3 = 0
	$x_{1}^{2} - x_{2} - x_{3}$	$x^{2} = 0$
	2	4
START:	X. =	$(2 \cdot 2 \cdot 2 \cdot 2)$ (not feasible)
	$f(x_0) =$	-2
SOLUTION:	x* =	(1, 1, 0, 0)
000011000	$f(x^*) =$	-1
	r(x*) =	0
	e(x*) =	0
	μ =	0
	I(x*) =	-
	u*_/u*_ =	1/1 = 1
	$\lambda_{\max}^*/\lambda_{\min}^* =$	2/2 = 1

PROBLEM:			4.0		
CLASSIFIC	ATTON.		το 		
SOURCE:	TTON.		Beltrami [6]. Ind	usi [35]	
NUMBER OF	VARTABLES:		n = 4		
NUMBER OF	CONSTRAINT	S •	m - 0 m-	m = 3 $b = 0$	
OBJECTIVE	FUNCTION:	2.	m ₁ = 0 , m=	m ₁ = y , b = 0	
	FONOTION.				
	f(x) =	- x	1 ^x 2 ^x 3 ^x 4		
CONSTRAINT	IS:				
	$x_1^3 + x_2^2$	-	1 = 0		
	2				
	$x_1^{-}x_4^{-} x_3^{-} = 0$				
	$x_4^2 - x_2$	=	0		
START:	X _	=	(.8.8.8.8.	3) (not feasible)	
	of(x _o)	=	4096	, (100 10001020)	
SOLUTION	**	_	$(2^{a}, 2^{2b}, (-1)^{i})$	p^{c} $(-1)^{i}p^{b}$	
DODUTION.	f(x*)	_	25	i=1.2	
	$r(x^*)$	_	0	a = -1/3	
	e(x*)	=	.80E-11	b = -1/4	
	μ.	=	0	c = -11/12	
	I(x*)	=	_		
	u* /u*	_	.5/.3536 = 1.41		
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	1.74/1.74 = 1		

PROBLEM:		41
CLASSIFICA	TION:	PLR-T1-4
SOURCE:		Betts [8], Miele e.al. [42]
NUMBER OF	VARIABLES:	n = 4
NUMBER OF	CONSTRAINTS:	$m_1 = 0$, $m - m_1 = 1(1)$, $b = 8$
OBJECTIVE	FUNCTION:	
	f(x) = 2	$-x_1x_2x_3$
CONCEPT THE	10 s	
CONSTRAINT		
	$x_1 + 2x_2 +$	$2x_3 - x_4 = 0$
	0 ≤ x <u>i</u> ≤	1 , i=1,2,3
	0 ≤ x ₁ ≤	2
	Т	
START:	x=	(2, 2, 2, 2) (not feasible)
	f(x ₀) =	-6
SOLUTION:	x* =	(2/3, 1/3, 1/3, 2)
	f(x*) =	52/27
	r(x*) =	0
	e(x*) =	.13E-10
	μ =	1
	I(x*) =	(8)
	u* = u*	.1111/.1111 = 1
	$\lambda_{\max}^*/\lambda_{\min}^* =$.67/.22 = 3

[
PROBLEM:		42	
CLASSIFICA	ATION:	QQR-T1-10	
SOURCE:		Brusch [14]	
NUMBER OF	VARIABLES:	n = 4	
NUMBER OF	CONSTRAINTS	$m_1 = 0$, $m - m_1 = 2(1)$) , b = 0
OBJECTIVE	FUNCTION:		
-			
×	$f(x) = (x_1$	$(-1)^{2} + (x_{2} - 2)^{2} + (x_{3} - 3)^{2}$) ²
	+ (1	$(x_{-4})^2$	
		4 ''	
CONSTRAINI	S:		
	$x_1 - 2 = 0$		
	$x^{2} + x^{2}$	- 2 - 0	
	<u>^</u> 3 <u>^</u> 4	2 - 0	
START:	x	= (1 , 1 , 1 , 1)	(not fessible)
	$f(\mathbf{x}) =$	= 14	(not reastory)
	- (10)		
SOLUTION:	X* =	= (2, 2, .6√2, .8√2)	
	f(x*) =	= 28 - 10/2	
	r(x*) =	= 0	
	e(x*) =	= .2E-23	
	μ =	= 0	
	I(x*) =		
	u* =	= 2.5355/2.0000 = 1.26	
	$\lambda_{\max}^*/\lambda_{\min}^* =$	= 7.07/2.00 = 3.54	

PROBLEM:	n y 2 Martin a San Talan Yang Kabupatén Kabupatén Kabupatén Kabupatén Kabupatén Kabupatén Kabupatén Kabupatén K	43 (Rosen-Suzuki)
CLASSIFIC	ATION:	QQR-T1-11
SOURCE: Be	etts [8], Ch	naralambous [18], Gould [27], Sheela [57]
NUMBER OF	VARIABLES:	n = 4
NUMBER OF	CONSTRAINTS	5: $m_1 = 3$, $m - m_1 = 0$, $b = 0$
OBJECTIVE	FUNCTION:	
	$f(x) = x_1^2 + 7$	$x^{2} + x_{2}^{2} + 2x_{3}^{2} + x_{4}^{2} - 5x_{1} - 5x_{2} - 21x_{3}^{2}$
CONSTRAINT	IS:	
	$8 - x_1^2 -$	$x_2^2 - x_3^2 - x_4^2 - x_1 + x_2 - x_3 + x_4 \ge 0$
	$10 - x_1^2 -$	$2x_2^2 - x_3^2 - 2x_4^2 + x_1 + x_4 \ge 0$
	$5 - 2x_1^2 -$	$x_2^2 - x_3^2 - 2x_1 + x_2 + x_4 \ge 0$
START:	xo	= (0, 0, 0, 0) (feasible)
	f(x ₀)	= 0
SOLUTION:	х*	= (0 , 1 , 2 , -1)
	$f(x^*)$	= -44
	r(x*)	= 0
	e(x*)	= .21E-9
	μ	= 2
	I(x*)	= (1,3)
	u* /u* min	= 2/1 = 2
	$\lambda_{\max}^*/\lambda_{\min}^*$	= 9/8.07 = 1.12

		
PROBLEM:		44
CLASSIFICA	TION:	QLR-T1-4
SOURCE:		Konno [37]
NUMBER OF	VARIABLES:	n = 4
NUMBER OF	CONSTRAINTS:	$m_1 = 6(6)$, $m-m_1 = 0$, $b = 4$
OBJECTIVE	FUNCTION:	
	f(x) = x ₁	$-x_2 - x_3 - x_1x_3 + x_1x_4 + x_2x_3 - x_2x_4$
CONSTRAINT	S:	
	$8 - x_1 - 2x_2$	≥ 0
	$12 - 4x_1 - x$	2 ≥ 0
	$12 - 3x_1 - 43$	x ₂ ≥ 0
	8 - 2x ₃ - x ₄	≥ 0
	$8 - x_3 - 2x_4$	≥ 0
	5 - x ₃ - x ₄	≥ 0 , $0 \leq x_{i}$, $i=1,\ldots,4$
START:	x_ =	(0,0,0,0) (feasible)
	$f(x_0) =$	0
SOLUTION:	x* =	(0,3,0,4)
	f(x*) =	-15
	r(x*) =	0
	e(x*) =	0
	μ =	4
	I(x*) =	(3,5,7,9)
	u*_/u*_ =	8.75/1.25 = 7
	$\lambda_{\max}^*/\lambda_{\min}^* =$	

r		
PROBLEM:		45
CLASSIFICATION:		PBR-T1-5
SOURCE:		Betts [8], Miele e.al. [42]
NUMBER OF	VARIABLES:	n = 5
NUMBER OF	CONSTRAINTS:	$m_1 = 0$, $m - m_1 = 0$, $b = 10$
OBJECTIVE	FUNCTION:	
	f(x) = 2	$-\frac{1}{120}x_1x_2x_3x_4x_5$
CONSTRAINT	'S :	
	0 ≤ x, ≤	i , i=1,,5
START .	x -	(2, 2, 2, 2) (not forgible)
ornit .	f(x) =	26/15
SOLUTION:	x* =	(1,2,3,4,5)
	f(x*) =	1
	r(x*) =	0
	e(x*) =	U
	μ =	
	1(x*) =	(0,7,8,9,10)
	umax/umin =	1/.2 = 5
	$\lambda_{\max}^{\star}/\lambda_{\min}^{\star}$	· · ·

PROBLEM:		47
CLASSIFICATION:		PPR-T1-3
SOURCE:		Huang, Aggerwal [34], Miele e.al. [43]
NUMBER OF	VARIABLES:	n = 5
NUMBER OF	CONSTRAINTS:	$m_1 = 0$, $m - m_1 = 3$, $b = 0$
OBJECTIVE	FUNCTION:	
	$f(x) = (x_1)$	$(x_2)^2 + (x_2 - x_3)^3 + (x_3 - x_4)^4$
	+ (x	$(x_4 - x_5)^4$
CONSTRAIN	rs:	
	$x_{1} + x_{2}^{2} +$	$x_{-}^{3} - 3 = 0$
	-1 -2	
	$x_0 - x_7^2 +$	$x_{-1} = 0$
	2 2	4
a	x.x 1 =	0
	15	
START:	x ₀ =	$(2, \sqrt{2}, -1, 2-\sqrt{2}, .5)$ (feasible)
	f(x ₀) =	12.4954368
SOLUTION:	x* =	(1,1,1,1,1)
	f(x*) =	0
	r(x*) =	0
	e(x*) =	0
	μ =	0
	I(x*) =	-
	u* =	0/0
	$\lambda_{\max}^*/\lambda_{\min}^* =$	2.08/.53 = 3.92

PROBLEM:	48
CLASSIFICATION:	QLR-T1-5
SOURCE:	Huang, Aggerwal [34], Miele e.al. [43]
NUMBER OF VARIABLES:	n = 5
NUMBER OF CONSTRAINTS:	$m_1 = 0$, $m-m_1 = 2(2)$, $b = 0$
OBJECTIVE FUNCTION:	
$f(x) = (x_1)$	$(x_{2} - x_{3})^{2} + (x_{4} - x_{5})^{2}$
CONSTRAINTS:	
$x_1 + x_2 + x_3$ $x_3 - 2(x_4 + x_3)$	$+x_4 + x_5 - 5 = 0$ $x_5) + 3 = 0$
START: x _o =	(3, 5, -3, 2, -2) (feasible)
$f(x_0) =$	84
SOLUTION: x* =	(1, 1, 1, 1, 1)
f(x*) =	0
$r(x^*) =$	0
$e(\mathbf{x}^*) =$	0
	0
T(v*) -	
	0/0
$\frac{max'}{\lambda_{max}} = \frac{\lambda_{max}}{\lambda_{min}} = \frac{\lambda_{max}}{\lambda_{min}} = \frac{\lambda_{max}}{\lambda_{max}} + \frac{\lambda_{max}}{\lambda_{max}} = \frac{\lambda_{max}}{\lambda_{max}} + \frac{\lambda_{max}}{\lambda_{max}} = \frac{\lambda_{max}}{\lambda_{max}} + \frac{\lambda_{max}}{\lambda_{max}} + \frac{\lambda_{max}}{\lambda_{max}} + \frac{\lambda_{max}}{\lambda_{max}} = \frac{\lambda_{max}}{\lambda_{max}} + \frac$	4/1.49 = 2.69

PROBLEM:		49
CLASSIFICATION:		PLR-T1-5
SOURCE:		Huang, Aggerwal [34]
NUMBER OF	VARIABLES:	n = 5
NUMBER OF	CONSTRAINTS:	$m_1 = 0$, $m-m_1 = 2(2)$, $b = 0$
OBJECTIVE	FUNCTION:	
-	$f(x) = (x_1)$	$(x_2)^2 + (x_3 - 1)^2 + (x_4 - 1)^4$
	+ ($x_5 - 1)^6$
CONSTRAINT	[S:	
	v + v + v	+ 4x - 7 = 0
	<u>1 2 3</u>	5 4 4 4
	x _z + 5x ₅ - 6	b = 0
START:	x ₀ =	(10 , 7 , 2 , -3 , .8) (feasible)
	f(x ₀) =	266
SOLUTION:	x* =	(1 , 1 , 1 , 1 , 1)
	f(x*) =	0
	r(x*) =	0
	e(x*) =	0
	μ =	0
	I(x*) =	-
	u _{max} /u _{min} =	0/0
	$\lambda_{\max}^*/\lambda_{\min}^* =$	4/.70E-10 = .57E11

PROBLEM:		50
CLASSIFICAT	TION:	PLR-T1-6
SOURCE:		Huang, Aggerwal [34]
NUMBER OF V	VARIABLES:	n = 5
NUMBER OF (CONSTRAINTS:	$m_1 = 0$, $m - m_1 = 3(3)$, $b = 0$
OBJECTIVE H	FUNCTION:	
	f(x) = (x ₁ + ($(x_4 - x_5)^2 + (x_2 - x_3)^2 + (x_3 - x_4)^4$
CONSTRAINTS	S:	
	$x_1 + 2x_2 + 3$ $x_2 + 2x_3 + 3$ $x_3 + 2x_4 + 3$	$3x_3 - 6 = 0$ $3x_4 - 6 = 0$ $3x_5 - 6 = 0$
START:	x ₀ = f(x ₀) =	(35 , -31 , 11 , 5 , -5) (feasible) 17416
SOLUTION:	x* = f(x*) = r(x*) = e(x*) = µ =	(1, 1, 1, 1, 1) 0 0 0 0
	$I(x^{*}) = u_{max}^{*}/u_{min}^{*} = \lambda_{max}^{*}/\lambda_{min}^{*} = 0$	- = 0/0 = 5.89/1.64 = 3.6

PROBLEM:		51
CLASSIFICA	TION:	QLR-T1-6
SOURCE:		Huang, Aggerwal [34]
NUMBER OF	VARIABLES:	n = 5
NUMBER OF	CONSTRAINTS:	$m_1 = 0$, $m - m_1 = 3(3)$, $b = 0$
OBJECTIVE	FUNCTION:	
	f(x) = (x ₁ + ($-x_{2})^{2} + (x_{2} + x_{3} - 2)^{2} + (x_{4} - 1)^{2}$ $x_{5} - 1)^{2}$
CONSTRAINT	5:	
	$x_1 + 3x_2 - 4$	= 0
	x ₃ + x ₄ - 2x	c ₅ = 0
	x ₂ - x ₅ =	0
• 179 • 179		(2.55 . 215) (feasible)
DIAUI .	f(x) =	8.5
COLIMITON	- \0 /	(1, 1, 1, 1, 1, 1)
ZOPULION:	f(v*) =	0
	$r(x^*) =$	0
	e(x*) =	0
	μ =	0
	I(x*) =	_
	u*_/u* =	0/0
	$\lambda_{\max}^*/\lambda_{\min}^* =$	3.49/1.90 = 1.84

PROBLEM:		52
CLASSIFICA	FION:	QLR-T1-7
SOURCE:		Miele e.al. [44.45]
NUMBER OF	VARIABLES:	n = 5
NUMBER OF (CONSTRAINTS:	$m_1 = 0$, $m - m_1 = 3(3)$, $b = 0$
OBJECTIVE I	FUNCTION:	
	f(x) = (4: +	$(x_{5} - 1)^{2} + (x_{2} + x_{3} - 2)^{2} + (x_{4} - 1)^{2}$
CONSTRAINT	S :	
	$x_1 + 3x_2 =$ $x_3 + x_4 - 2$ $x_2 - x_5 =$	$x_5 = 0$
START:	x ₀ =	(2, 2, 2, 2, 2) (not feasible)
	f(x ₀) =	42
SOLUTION:	x* =	= (-33 , 11 , 180 , - 158 , 11)/349
	f(x*) =	1859/349
	r(x*) =	= O
	e(x*) =	14E-9
	μ =	= 0
	I(x*) =	
	u* /u* =	= 7.7479/2.9054 = 2.6667
	$\lambda_{\max}^*/\lambda_{\min}^* =$	= 26.93/1.99 = 13.51

PROBLEM:	53
CLASSIFICATION.	OT.R-T1-8
CONDER.	Rotta [8] Miolo o al [40.47]
NUMBE OF KARTARIES.	Detts [0], Miere e.ar. [42,47]
NOMBER OF VARIABLES:	n = 5
NUMBER OF CONSTRAINTS	$m_1 = 0$, $m_1 = 3(3)$, $b = 10$
OBJECTIVE FUNCTION:	
f(x) = ($(x_1 - x_2)^2 + (x_2 + x_3 - 2)^2 + (x_4 - 1)^2$
4	$(x_5 - 1)^2$
CONSTRAINTS:	
$x_1 + 3x_2$	= 0
x ₃ + x ₄ -	$2x_5 = 0$
x ₂ - x ₅ =	= O
-10 ≤ x _i	≤ 10 , i=1,,5
START: X	= (2, 2, 2, 2, 2) (not feasible)
f(x ₀)	= 6
SOLUTION: x*	= (-33, 11, 27, -5, 11)/43
f(x*)	= 176/43
r(x*)	= 0
e(x*)	= .28E-9
μ	= 0
I(x*)	
u* /u*.	= 5.9535/2.0465 = 1.84
$\frac{\max \min \lambda_{\max}^{\star}}{\lambda_{\max}^{\star}}$	= 3.49/1.90 = 1.84

PROBLEM:		54
CLASSIFICATION:		GLR-T1-2
SOURCE:		Betts [8], Picket [50]
NUMBER OF VAR	IABLES:	n = 6
NUMBER OF CON	STRAINTS:	$m_1 = 0$, $m - m_1 = 1(1)$, $b = 12$
OBJECTIVE FUNC	CTION:	
f(x) = -	-exp(-h(x)/	/2)
h(x) =	((x ₁ - 1.E6	$(x_1 - 1.E4)(x_2 - 1)/2.E4$
	+ $(x_2 - 1)^2$	$(x_3 - 2.E6)^2 / (.96 \cdot 4.9E13)$
-	+ (x ₄ - 10)	$(x_5 - 1.E-3)^2/2.5E-3$
	+ (x ₆ - 1.1	.E8) ² /2.5E17
CONSTRAINTS:		
x ₁ + 4.E3	x ₂ - 1.76E4	E4 = 0
0 ≤ x ₁	≤ 2.E4	$-10 \le x_2 \le 10$ $0 \le x_3 \le 1.E7$
0 ≤ x ₄	≤ 20	$-1 \le x_5 \le 1$ $0 \le x_6 \le 2.E8$
START: X	=	(6E3 , 1.5 , 4E6 , 2 , 3E-3 , 5E7)
f(x ₀) =	7651 (not feasible)
SOLUTION: x*	=	(91600/7,79/70,2E6,10,1E-3,1E8)
f(x*) =	$-\exp(-27/280)$
r(x*) =	0
е (x*) =	.20E-10
ц	=	0
I(x*) =	-
u* m	hax ^{/u*} min =	.4865E-4/.4865E-4 = 1
λ #	$hax/\lambda_{min}^* =$	362.9/.36E-17 = .10E21

PROBLEM:	55		
TROBUEN.	GTB-T1-3		
CONDAD.	Hsia [33]		
NIIMER OF TARTART	rs: n = 6		
NUMBER OF CONSERV	m = 0 $m = 6(6)$ $h = 8$		
ODIDOMINE DUNCEION	NN.		
ORPECTIVE FUNCTIC			
f(x)	$= x_1 + 2x_2 + 4x_5 + \exp(x_1x_4)$		
CONSTRAINTS:			
x ₁ + 2	$2x_2 + 5x_5 - 6 = 0$		
x ₁ + x	$x_2 + x_3 - 3 = 0$		
x ₄ + x	$x_5 + x_6 - 2 = 0$		
x ₁ + x	$r_4 - 1 = 0$		
x ₂ + x	$c_5 - 2 = 0$		
x ₃ + x	$c_6 - 2 = 0$		
0 <	x_1 , i=1,,6, $x_1 \le 1$, $x_4 \le 1$		
START: x _o	= (1 , 2 , 0 , 0 , 0 , 2) (not feasible)		
f(x ₀)	= 6		
SOLUTION: x*	= (0 , 4/3 , 5/3 , 1 , 2/3 , 1/3)		
f(x*)	= 19/3		
r(x*)	= 0		
e(x*)	= 0		
μ	= 8		
I(x*)	= (1, 8)		
u*	u* = -		
$\lambda_{\max}^{\star}/$	$\lambda_{\min}^{\star} = -$		
PROBLEM:		56	
------------	---	--	------------------------------------
CLASSIFICA	TION:	PGR-T1-2	
SOURCE:		Brusch [15]
NUMBER OF	VARIABLES:	n = 7	
NUMBER OF	CONSTRAINTS	: m ₁ = 0	$, m-m_1 = 4 , b = 0$
OBJECTIVE	FUNCTION:		
	f(x) = -	• x ₁ x ₂ x ₃	
CONSTRAINT	S:		
	$x_1 - 4.2si$ $x_2 - 4.2si$ $x_3 - 4.2si$ $x_1 + 2x_2 +$	$n^{2}x_{4} = 0$ $n^{2}x_{5} = 0$ $n^{2}x_{6} = 0$ $-2x_{3} - 7.2sin$	$x_7 = 0$
START:	x _o	= .(1 , 1 , 1	, a , a , a , b)
	$f(x_0)$	= -1	(feasible)
SOLUTION:	X*	= (2.4,1.2,1	.2,±c+jπ,±d+kπ,±d+lπ,(r+.5)π)
	f(x*)	= -3.456	$a = \arcsin\sqrt{1/4.2}$
	r(x*)	= 0	$b = \arcsin\sqrt{5/7.2}$
	e(x*)	= .67E-10	$c = \arcsin\sqrt{4/7}$
	μ	= 0	$d = \arcsin\sqrt{2/7}$
	I(x*)	= -	$j,k,l,r = 0, \pm 1, \pm 2, \dots$
	u*	= 1.44/.68E-	11 = .21E12
	$\lambda_{\max}^*/\lambda_{\min}^*$	= 20.74/.76	= 27.45

PROBLEM:	57
CLASSIFICATION:	SQR-P1-1
SOURCE:	Betts [8], Gould [27]
NUMBER OF VARIABLES:	n = 2
NUMBER OF CONSTRAINTS:	$m_1 = 1$, $m-m_1 = 0$, $b = 2$
OBJECTIVE FUNCTION:	
$f(x) = \sum_{i=1}^{44}$	$f_{i}(x)^{2}$
$f_{i}(x) = b_{i}$	$-x_1 - (.49 - x_1)exp(-x_2(a_1 - 8))$
i=	1,,44
a _i , b _i : cf.	Appendix A
CONSTRAINTS:	
.49x ₂ - x ₁ x ₂	09 ≥ 0
.4 ≤ x ₁	$-4 \leq x_2$
START: x _o =	(.42,5) (feasible)
$f(x_0) =$.030798602
SOLUTION: x* =	(.419952675 , 1.284845629)
f(x*) =	.02845966972
r(x*) =	0
e(x*) =	.98E-7
μ =	
$I(x^*) =$	(1)
$u_{\max}^{u_{\min}} = \lambda_{\pm \dots}^{\star} / \lambda_{\pm \dots}^{\star} =$.23/.23 = 1

PROBLEM:		59	
CLASSIFICAT	CION:	GQR-P1-1	
SOURCE:		Barnes [3], Himmelblar	u [29]
NUMBER OF V	ARIABLES:	n = 2	
NUMBER OF C	CONSTRAINTS:	$m_1 = 3$, $m - m_1 =$	0 , b = 4
OBJECTIVE H	FUNCTION:		
f(x) =	-75.196 + 3	$3.8112x_1 + .0020567x_1^3$	- 1.0345E-5x ₁ ⁴
+	6.8306x ₂	.030234x ₁ x ₂ + 1.28134E-	$3x_2x_1^2 = $
+	2.266E-7x1 ⁴ x	$x_225645x_2^2 + .00346$	$04x_2^3 - 1.3514E - 5x_2^4$
+	28.106/(x ₂ +	$-1) + 5.2375E - 6x_1^2 x_2^2$	+ 6.3E-8 $x_1^3 x_2^2$
-	$7E-10x_1^3x_2^3$	$-3.405E-4x_1x_2^2 + 1.66$	$38E-6x_1x_2^3$
+	2.8673exp(.()005x ₁ x ₂) - 3.5256E-5x ₁	³ x ₂
CONSTRAINTS	5:		
X.	1 ^x 2 - 700 ≥	0	
X	$2 - x_1^2 / 125$	≥ 0	0 ≤ x ₁ ≤ 75
(3	$(x_2 - 50)^2 - 5$	$5(x_1 - 55) \ge 0$	0 ≤ x ₂ ≤ 65
START:	x ₀ =	(90, 10)	(not feasible)
	f(x ₀) =	86.878639	
SOLUTION:	x* =	(13.55010424 , 51.660	18129)
	f(x*) =	-7.804226324	
	r(x*) =	· 0	
	e(x*) =	.27E-6	
	μ =	: 1	
	I(x*) =	: (1)	
	u _{max} /u _{min} =	.01142/.01142 = 1	
	$\lambda_{\max}^*/\lambda_{\min}^* =$	• •13/•13 = 1	

PROBLEM:		60
CLASSIFIC	ATION:	PPR-P1-1
SOURCE:		Betts [8], Miele e.al. [42.44]
NUMBER OF	VARIABLES:	n = 3
NUMBER OF	CONSTRAINTS	$: m_1 = 0$, $m - m_1 = 1$, $b = 6$
OBJECTIVE	FUNCTION:	
	f(x) = ($(x_1 - 1)^2 + (x_1 - x_2)^2 + (x_2 - x_3)^4$
CONSTRAIN	rs:	
	$x (1 + x)^2$	$) + x^{4} - 4 - 3\sqrt{2} - 0$
	1 1 1 2	/ 3 +)/2 = 0
	-10 ≤ x.	≤ 10 . i=1.2.3
	1	, _ , _ , _ , _ , _ , _ , _ , _ , _ , _
START:	ox	= (2 , 2 , 2) (not feasible)
	$f(x_0)$	= 1
SOLUTION:	x*	= (1.104859024,1.196674194,1,535262257)
	f(x*)	03256820025
	r(x*)	= .23E-9
	e(x*)	= .38E-7
	μ	= 1
	I(x*)	= (1)
	u*	01073/.01073 = 1
	$\lambda_{max}^*/\lambda_{min}^*$	= 5.72/2.07 = 2.76

PROBLEM:		61
CLASSIFICAT	ION:	QQR-P1-1
SOURCE:		Fletcher, Lill [26]
NUMBER OF V	ARIABLES:	n = 3
NUMBER OF C	CONSTRAINTS:	$m_1 = 0$, $m - m_1 = 2$, $b = 0$
OBJECTIVE H	FUNCTION:	
	$f(x) = 4x_1$	$^{2} + 2x_{2}^{2} + 2x_{3}^{2} - 33x_{1} + 16x_{2} - 24x_{3}$
CONSTRAINTS	S :	
	$3x_1 - 2x_2^2$	- 7 = 0
	1 × - × ² -	11 = 0
	4 <u>~</u> 1 <u>~</u> 3	
N - 14		
START:	x_ =	(0,0,0) (not feasible)
	$f(x_0) =$	0
SOLUTION:	x* =	(5.326770157,-2.118998639,3.210464239)
	f(x*) =	-143.6461422
	r(x*) =	•29E-9
	e(x*) =	•21E-6
	μ =	= O
	I(x*) =	
	u* /u* =	= 1.7378/.8877 = 1.96
	$\lambda_{\max}^*/\lambda_{\min}^* =$	= 7.83/7.83 = 1

PROBLEM:		62	
CLASSIFICAT	ION:	GLR-P1-1	
SOURCE:		Betts [8], Picket [50]	
NUMBER OF V	ARIABLES:	n = 3	
NUMBER OF C	ONSTRAINTS:	$m_1 = 0$, $m - m_1 = 1(1)$, $b = 6$	
OBJECTIVE H	FUNCTION:		
f(x) =	-32.174(255	$\ln((x_1 + x_2 + x_3 + .03) / (.09x_1 + x_2 + x_3 + .03))$	
	+ 280 ln((x	$x_2 + x_3 + .03) / (.07 x_2 + x_3 + .03))$	
	+ 290 ln((x	$x_3 + .03) / (.13 x_3 + .03)))$	
CONSTRAINTS	5:		
00110110110		1 0	
	$x_1 + x_2 + 2$	3 - 1 = 0	
	0 ≤ x _i :	≤ 1 , i=1,2,3	
		(7 2 1) (feesible)	
START:	x ₀ =	_25608 3	
	I(X) =		
SOLUTION:	x* =	(.6178126908,.328202223,.5398508606E-1)	
	f(x*) =	-26272.51448	
	r(x*) =	: 0	
	e(x*) =	.20E-5	
	μ =	= 0	
	I(x*) =	-	
	u _{max} /u _{min} =	= 6387/6387 = 1	
	$\lambda_{\max}^*/\lambda_{\min}^* =$	= .32E6/.72E4 = 44.9	

PROBLEM:		63	
CLASSIFICAT	FION:	QQR-P1-2	
SOURCE:	Himmelbla	u [29], Paviani [48],	Sheela [57]
NUMBER OF V	VARIABLES:	n = 3	
NUMBER OF (CONSTRAINTS:	$m_1 = 0$, $m - m_1 =$	= 2(1) , $b = 3$
OBJECTIVE 1	FUNCTION:		
	f(x) = 1000	$-x_1^2 - 2x_2^2 - x_3^2 - x_3^2$	• x ₁ x ₂ - x ₁ x ₃
CONSTRAINT	S :		
	$8x_1 + 14x_2 +$	$7x_3 - 56 = 0$	
	$x_1^2 + x_2^2 + x_3^2$	$x_3^2 - 25 = 0$	
	0 ≤ x _i ,	i=1,2,3	
START:	x ₀ =	(2,2,2)	(not feasible)
	f(x ₀) =	976	
SOLUTION:	x* =	(3.512118414,.216988	1741,3.552174034)
	f(x*) =	961.7151721	
	r(x*) =	0	
	e(x*) =	.62E-5	
	u =	0	
	I(x*) =	_	
	u* /u*. =	1.223/.2749 = 4.45	
	$\lambda_{\max}^* / \lambda_{\min}^* =$	1.52/1.52 = 1	

PROBLEM:			64		
CLASSIFICATION:			PPR-P1-2		
SOURCE:			Best [7]		
NUMBER OF	VARIABLES:		n = 3		
NUMBER OF	CONSTRAINTS	5:	$m_1 = 1$, $m - m_1 = 0$, $b = 3$		
OBJECTIVE	FUNCTION:				
	f(x) = 5	^x 1	+ $50000/x_1$ + $20x_2$ + $72000/x_2$		
	+	- 1	$0x_3 + 144000/x_3$		
CONSTRAINT	'S :				
	$1 - 4/x_1 -$	- 3	$2/x_2 - 120/x_3 \ge 0$		
1.E-5 ≤ x _i , i=1,2,3					
х.					
START:	xo	=	(1, 1, 1) (not feasible)		
	$f(x_0)$	=	266035		
SOLUTION:	x*	=	(108.7347175,85.12613942,204.3247078)		
	f(x*)	=	6299.842428		
	r(x*)	=	0		
	e(x*)	=	•28E-4		
	μ	=	1		
	I(x*)	=	(1)		
	u*_/u*	=	2279/2279 = 1		
	$\lambda_{\max}^*/\lambda_{\min}^*$	П	.21/.092 = 2.28		

PROBLEM:		65		
CLASSIFIC,	ATION:	QQR-P1-3		
SOURCE:		Murtagh, Sargent [47]		
NUMBER OF	VARIABLES:	n = 3		
NUMBER OF	CONSTRAINTS	$m_1 = 1$, $m - m_1 = 0$, $b = 6$		
OBJECTIVE	FUNCTION:			
	f(x) = (x)	$(x_1 - x_2)^2 + (x_1 + x_2 - 10)^2 / 9 + (x_3 - 5)^2$		
CONSTRAIN	rs:			
	$48 - x_1^2 -$	$x_2^2 - x_3^2 \ge 0$		
	$-4.5 \le x_i \le 4.5$, i=1,2			
	-5 ≤ x ₃	≤ 5		
START:	x _o = f(x _o) =	= (-5, 5, 0) (not feasible) = 1225/9		
SOLUTION:	X* :	= (3.650461821,3.65046168,4.6204170507)		
а. -	f(x*) =	- 9535288567		
	r(x*) =	= 0		
	e(x*) =	= .40E-6		
	μ :	= 1		
	I(x*) =	= (1)		
	u* /u* : :	08215/.08215 = 1		
	$\lambda_{\max}^*/\lambda_{\min}^*$	= 1.95/1.68 = 1.16		

DDODIDU		
PRUBLEM:		6 6 *
CLASSIFIC	ATION:	LGR-P1-1
SOURCE:		Eckhardt [24]
NUMBER OF	VARIABLES:	n = 3
NUMBER OF	CONSTRAINT	S: $m_1 = 2$, $m - m_1 = 0$, $b = 6$
OBJECTIVE	FUNCTION:	
	f(x) =	$2x_38x_1$
CONSTRAIN	TS:	
	x ₂ - exp(;	z ₁) ≥ 0
	x3 - exp(3	₂) ≥ 0
	0 ≤ x ₁	≤ 100
	0 ≤ x ₂	≤ 100 ⁰
	0 ≤ x ₃	≤ 10
START:	xo	= (0, 1.05, 2.9) (feasible)
	$f(x_0)$	58
SOLUTION:	x*	= (.1841264879,1.202167873,3.327322322)
	f(x*)	5181632741
	r(x*)	= •58E-10
	e(x*)	= .86E-11
	ц	= 2
	I(x*)	= (1 , 2)
	u*_/u*	6654/.2 = 3.33
	$\lambda_{\max}^*/\lambda_{\min}^*$	= .096/.096 = 1

PROBLEM:		67 (Colville No.8)		
CLASSIFICATION:		GGI-P1-1		
SOURCE:		Colville [20], Himmelblau [29]		
NUMBER OF V	ARIABLES:	n = 3		
NUMBER OF C	ONSTRAINTS:	$m_1 = 14$, $m-m_1 = 0$, $b = 6$		
OBJECTIVE F	UNCTION:			
:	f(x) = -(.)	$063y_2(x)y_5(x) - 5.04x_1 - 3.36y_3(x)$		
	($035x_2 - 10x_3)$		
	y _i (x) : cf.	Appendix A		
CONSTRAINTS	:			
		\sim 0 $i-1$ 7		
	y _{i+1} (x) - a _i	2 0 9 1=19.0091		
	$a_i - y_{i-6}(x)$	≥ 0 , i=8,,14		
	1.E-5 ≤ x ₁	≤ 2.E3		
	1.E-5 ≤ x ₂	≤ 1.6E4		
	1.E-5 ≤ x ₃	≤ 1.2E2		
	a: : cf. App	endix A		
START:	x ₀ =	(1745, 12000, 110) (feasible)		
	f(x ₀) =	868.6458		
SOLUTION:	x* =	(1728.371286,16000.00000,98.14151402)		
	f(x*) =	-1162.036507		
	r(x*) =	0		
	e(x*) =	0		
	μ =	3		
	I(x*) =	(9,11,19)		
	u _{max} /u _{min} =	1.5872/.03403 = 46.6		
	$\lambda_{\max}^*/\lambda_{\min}^* =$	_		

PROBLEM:		68, 69 (cost optimal :	inspection plan)	
CLASSIFICATION:		GGR-P1-(1,2)		
SOURCE:		Collani [19]		
NUMBER OF VA	RIABLES:	n = 4		
NUMBER OF CO	NSTRAINTS:	$m_1 = 0$, $m-m_1 = 2$, b = 8	
OBJECTIVE FU	NCTION:			
f(x) = ($a_i^{n_i} - \frac{b_i(e)}{exp(e)}$	$\frac{xp(x_1) - 1 - x_3}{x_1) - 1 + x_4} x_4) / x_1$, i=1,2	
No. 68 : a	1 = .0001,	$b_1 = 1$, $a_1 = 1$, n_1	= 24	
No. 69 : a	2 = .1 ,	$a_2 = 1000$, $a_2 = 1$, n_2	- 4	
CONSTRAINTS:				
X-3 -	- 2¢(-x ₂) =	0		
	*/		0	
×4 -	- ♀(-x ₂ + d _i	$\sqrt{n_{i}} - Q(-x_{2} - d_{i}\sqrt{n_{i}}) =$	0	
Φ (x)	$=\int_{-\infty}^{x} ex$	$p(-y^2/2)/\sqrt{2\pi}$ dy		
.000	$0.1 \le x_1 \le 10$	$0, 0 \le x_2 \le 100, 0 \le x_2$	$_{3} \le 2, 0 \le x_{4} \le 2$	
START:	x ₀ =	(1,1,1,1) (n	ot feasible)	
		- for both problems		
	f(x ₀) =	2618407	-631.3525	
SOLUTION:	x* =	(.06785874,3.6461717,.	00026617,.8948622)	
		(.02937141,1.1902534,.	23394676,.7916678)	
	f(x*) =	920425026	-956.71288	
	r(x*) =	•54E-7	•44E-10	
	e(x*) =	•14E−4	.33E-4	
	μ =	0	0	
	I(x*) =	-	-	
	u* =	13.66/.0777 = 176	44.47/32.81 = 1.3	
	$\lambda_{\max}^*/\lambda_{\min}^* =$	16.4/.062 = .26E3	.26E5/19.6 = .1E4	

PROBLEM:		70	
CLASSIFICA	ATION:	SQR-P1-1	
SOURCE:		Himmelblau [29,30]	
NUMBER OF	VARIABLES:	n = 4	
NUMBER OF	CONSTRAINT	S: $m_1 = 1$, $m - m_1 = 0$, $b = 8$	
OBJECTIVE	FUNCTION:		
$f(x) = \sum_{i=1}^{19} (y_{i,cal} - y_{i,obs})^2$			
^y i,cal	= (1 + 1	$\frac{1}{2x_2}) [x_3 b^{x_2} (x_2/6.2832)^{5} (c_1/7.685)^{x_2-1}]$	
	exp(x ₂	$- bc_1 x_2 / 7.658) + (1 + \frac{1}{12x_1}) [(1 - x_3)(b/x_4)^{x_1}]$	
	(x ₁ /6.	$(c_{i}/7.658)^{x_{1}-1} exp(x_{1} - bc_{i}x_{1}/(7.658x_{4}))$	
	b = x3	$+ (1 - x_3)x_4$	
	c _i , y _i	obs : cf. Appendix A	
CONSTRAINT	S:		
	x ₃ + ($1 - x_3 x_4 \ge 0$	
	.00001	≤ x _i ≤ 100 , i=1,2,4	
	.00001	< x ₃ < 1	
START:	xo	= (2 , 4 , .04 , 2) (feasible)	
	$f(x_0)$	= .9818596	
SOLUTION:	x*	= (12.27695,4.631788,.3128625,2.029290)	
	f(x*)	007498464	
	r(x*)	= 0	
	e(x*)	= 0	
	μ	= 0	
	I(x*)	= -	
	u* /u* max /umin	= -	
	$\lambda_{\max}^*/\lambda_{\min}^*$	= 18.1/.91E-3 = .20E5	

PROBLEM:		71
CLASSIFICATION	N:	PPR-P1-3
SOURCE:		Bartholomew-Biggs [4]
NUMBER OF VAR	IABLES:	n = 4
NUMBER OF CON	STRAINTS:	$m_1 = 1$, $m-m_1 = 1$, $b = 8$
OBJECTIVE FUNC	CTION:	
f(:	x) = x ₁ x ₂	$x_1(x_1 + x_2 + x_3) + x_3$
CONSTRAINTS:		
×1:	x ₂ x ₃ x ₄ - 25	$5 \ge 0$
x ₁	$x^{2} + x_{2}^{2} + x_{3}$	$x_3^2 + x_4^2 - 40 = 0$
1	≤ x _i ≤	5 , i=1,,4
CUT DU		$(1 5 5 1) \qquad (feegible)$
START. XO	-	16
	x ₀ / -	
SOLUTION: x*	=	(1, 4.7429994, 3.8211503, 1.3794082)
f(x*) =	17.0140173
r(x*) =	0
е (x*) =	•51E-6
μ	=	2
I(x*) =	(1,2)
u* m	hax ^{/u*} min =	1.0879/.1615 = 6.74
λ *	$\lambda_{min} =$	1.18/1.18 = 1

Г		
PROBLEM:		72 (optimal sample size)
CLASSIFIC	ATION:	LPR-P1-1
SOURCE:		Bracken, McCormick [13]
NUMBER OF	VARIABLES:	n = 4
NUMBER OF	CONSTRAINTS:	$m_1 = 2$, $m - m_1 = 0$, $b = 8$
OBJECTIVE	FUNCTION:	
	f(x) = 1 +	$x_1 + x_2 + x_3 + x_4$
CONSTRAIN	rs:	
	.0401 - 4/x ₁	$-2.25/x_2 - 1/x_325/x_4 \ge 0$
	.0100851	$6/x_136/x_264/x_364/x_4 \ge 0$
	.001 ≤ x _i	≤ (5 - i)E5 , i=1,,4
START:	x_ =	(1, 1, 1, 1) (not feasible)
	$f(x_0) =$	5
SOLUTION:	x* =	(193.4071,179.5475,185.0186,168.7062)
	f(x*) =	727.67937
	r(x*) =	0
	e(x*) =	•11E-4
	μ =	2
	I(x*) =	(1,2)
	u*/u* =	•4147E5/•7693E4 = 5•39
	$\lambda_{\max}^* / \lambda_{\min}^* =$.011/.011 = 1.02

DDODIDN.		
PROBLEM:		73 (cattle-feed)
CLASSIFICA	TION:	LGI-P1-1
SOURCE:		Biggs [10], Bracken, McCormick [13]
NUMBER OF	VARIABLES:	n = 4
NUMBER OF	CONSTRAINTS:	$m_1 = 2(1)$, $m-m_1 = 1(1)$, $b = 4$
OBJECTIVE	FUNCTION:	
	f(x) = 24	•55x ₁ + 26.75x ₂ + 39x ₃ + 40.50x ₄
CONSTRAINT	S:	
	2.3x ₁ + 5.6	$x_2 + 11.1x_3 + 1.3x_4 - 5 \ge 0$
	12x ₁ + 11.9	$x_2 + 41.8x_3 + 52.1x_4 - 21$
	- 1.645(.28	$8x_1^2 + .19x_2^2 + 20.5x_3^2 + .62x_4^2)^{1/2} \ge 0$
	x ₁ + x ₂ + x	$3 + x_4 - 1 = 0$
-	0 ≤ x _i ,	i=1,,4
START:	x ₀ =	= (1 , 1 , 1 , 1) (not feasible)
	f(x _o) =	= 130.8
SOLUTION:	x* =	= (.6355216,12E-11,.3127019,.05177655)
	f(x*) =	= 29.894378
	r(x*) =	= .99E-10
	e(x*) =	= 0
	μ =	= 3
	I(x*) =	= (1,2,4)
	u* /u* =	= 18.37/.2433 = 75.5
	$\lambda_{\max}^*/\lambda_{\min}^* =$	=

PROBLEM:	aangalat berenapada kaada anda ka	,	74 , 75	
CLASSIFICAT	CION:		PGR-P1-(1,2)	
SOURCE:			Beuneu [9]	
NUMBER OF V	ARIABLES:		n = 4	
NUMBER OF C	CONSTRAINTS	:	$m_1 = 2(2)$, $m-m_1$	= 3 , b = 8
OBJECTIVE H	FUNCTION:			
	$f(x) = 3x_1$	+	$1.E-6x_1^3 + 2x_2 + \frac{2}{3}E-$	6x ₂ ³
CONSTRAINTS	5:			
x ₄ - x ₃	+ a. ≥ 0			
$x_3 - x_4$	+ a, ≥ 0			
1000sin((-x ₃ 25)	+	1000sin(-x ₄ 25) +	$894.8 - x_1 = 0$
1000sin((x ₃ 25) +	F 1	000sin(x ₃ - x ₄ 25) + 894.8 - $x_2 = 0$
1000sin((x ₄ 25) +	+ 1	000sin(x ₄ - x ₃ 25) + 1294.8 = 0
$0 \le x_i \le 1200$, $i=1,2$				
-aj ≤	x _i ≤ a _j	9	i=3,4	
No. 74	a ₁ = .55		No.75 : a	2 = .48
START:	xo	=	(0 , 0 , 0 , 0)	(not feasible)
			- for both problems	
	$f(x_0)$	_	0	
SOLUTION:	x*		(679.9453,1026.067,	.1188764,3962336)
			(776.1592,925.1949,	.05110879,4288911)
	f(x*)	-	5126.4981	5174.4129
	$r(x^*)$	=	.75E-7	.30E-7
	e(x*)	=	.52E-7	0
	μ	=	0	1
	$I(x^*)$		-	(1)
	u* /u* min	=	5.46/4.11 = 1.33	2779/3.712 = 748.7
	$\lambda_{max}^{\star}/\lambda_{min}^{\star}$	=	.49E-2/.49E-2 = 1	-

PROBLEM:		76
CLASSIFIC	Δ Τ Τ Ο Ν :	0T.R-P1-1
SOURCE.		Murtach Sarcont [17]
NUMBER OF	UADIARIES.	muttagn, bargent [4]
NUMBER OF	CONCEDATING :	II = 4
NUMBER OF	CONSTRAINTS:	$m_1 = 2(2)$, $m - m_1 = 0$, $b = 4$
OBJECTIVE	FUNCTION:	
	$f(x) = x_1^2$	$x^{2} + .5x_{2}^{2} + x_{3}^{2} + .5x_{4}^{2} - x_{1}x_{3} + x_{3}x_{4}$
	- 3	$x_1 - 3x_2 + x_3 - x_4$
CONSTRAIN	IS:	
	$5 - x_1 - 2x_2$	$x_{2} - x_{3} - x_{4} \ge 0$
	$4 - 3x_1 - x_2$	$2 - 2x_3 + x_4 \ge 0$
	$x_2 + 4x_3 - 1$	•5 ≥ 0
	0 ≤ x _. ,	i=1,,4
START:	x ₀ =	(.5,.5,.5,.5) (feasible)
	f(x ₀) =	-1.25
SOLUTION:	x* =	(.2727273,2.090909,26E-10,.5454545)
	f(x*) =	-4.681818181
	r(x*) =	.84E-10
	e(x*) =	.15E-10
	μ =	2
	I(x*) =	(1,6)
	u*_/u* =	1.7272/.4545 = 3.8
	$\lambda_{\max}^*/\lambda_{\min}^* =$	1.83/1 =1.83

PROBLEM:		77
CLASSIFICA	TION:	PGR-P1-3
SOURCE:		Betts [8]. Miele e.al. [42.44.45]
NUMBER OF	VARIABLES:	n = 5
NUMBER OF	CONSTRAINTS	$m_1 = 0$, $m_2 = 2$, $b = 0$
OBJECTIVE	FUNCTION:	
	f(x) = (:	$(x_1 - 1)^2 + (x_1 - x_2)^2 + (x_3 - 1)^2$ $(x_1 - 1)^4 + (x_5 - 1)^6$
		4 5 7
CONSTRAINT	:5 :	
	$x_1^2 x_4 + six_2 x_2 + x_3^4 x_4$	$x_4 - x_5) - 2\sqrt{2} = 0$ $x_4 - 8 - \sqrt{2} = 0$
START:	x _o	= (2 , 2 , 2 , 2 , 2 , 2)
	$f(x_0)$	4 (not feasible)
SOLUTION:	X*	= (1.166172,1.182111,1.380257,1.506036,
	f(x*)	• .24150513 .6109203)
	r(x*)	• 12E-9
	e(x*)	- • 53E-7
	μ	= 0
	I(x*)	
	u*_/u*	.08554/.03188 = 2.68
	$\lambda_{\max}^*/\lambda_{\min}^*$	= 3.92/.75 = 5.25

DRODIEN			80	
PROBLEM:			78	
CLASSIFIC,	ATION:		PPR-P1-4	
SOURCE:			Asaadi [1], Powell [51]
NUMBER OF	VARIABLES:		n = 5	
NUMBER OF	CONSTRAINT	5:	$m_1 = 0$, $m - m_1 =$	3 , b = 0
OBJECTIVE	FUNCTION:			
	f(x) = 2	² 1 ^x	2 ^x 3 ^x 4 ^x 5	
CONSTRAIN	rs:	C		
	$x_1^2 + x_2^2$	+	$x_3^2 + x_4^2 + x_5^2 - 10 =$	0
	x ₂ x ₃ - 5x ₂	₽ ^x 5	= 0	
	$x_1^3 + x_2^3$	+	1 = 0	
a				
START:	xo	=	(-2, 1.5, 2, -1, -	1)
	$f(x_0)$	=	-6	(not feasible)
SOLUTION:	х*	=	(-1.717142,1.595708,1.	827248,7636429,
	f(x*)	=	-2.91970041	7636435)
	r(x*)	=	•35E-9	
	e(x*)	=	.91E-5	
	μ	=	0	
	I(x*)	=	-	
	u* /u* min	=	.7444/.09681 = 7.69	
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	3.04/2.98 = 1.02	

PROBLEM:		79
CLASSIFICAT	FION:	PPR-P1-5
SOURCE:		Betts [8], Miele e.al. [42,44,45]
NUMBER OF	VARIABLES:	n = 5
NUMBER OF (CONSTRAINTS:	$m_1 = 0$, $m - m_1 = 3$, $b = 0$
OBJECTIVE 1	FUNCTION:	
	$f(x) = (x_1$	$(x_1 - x_2)^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2$
	+ ($(x_3 - x_4)^4 + (x_4 - x_5)^4$
CONSTRAINT	S:	
	$x_1 + x_2^2 + x_3$	$x_3^3 - 2 - 3\sqrt{2} = 0$
	$x_2 - x_3^2 + x_3$	$x_4 + 2 - 2\sqrt{2} = 0$
	$x_1 x_5 - 2 =$	0
START:	x =	(2, 2, 2, 2, 2) (not feasible)
	$f(x_0) =$	1
SOLUTION:	x* =	(1.191127,1.362603,1.472818,1.635017,
	f(x*) =	.0787768209 1.679081)
	r(x*) =	.58E-9
	e(x*) =	.71E-10
	μ =	0
	I(x*) =	-
	u*/u* =	.3882E-1/.2873E-3 = 135.1
	$\lambda_{\max}^* / \lambda_{\min}^* =$	2.03/.70 = 2.88

[
PROBLEM:		80
CLASSIFIC.	ATION:	GPR-P1-1
SOURCE:		Powell [52]
NUMBER OF	VARIABLES:	n = 5
NUMBER OF	CONSTRAINTS:	$m_1 = 0$, $m - m_1 = 3$, $b = 10$
OBJECTIVE	FUNCTION:	
	f(x) = exp	$(x_1 x_2 x_3 x_4 x_5)$
CONSTRAIN	TS:	
	$x_1^2 + x_2^2 +$	$x_3^2 + x_4^2 + x_5^2 - 10 = 0$
	$x_2x_3 - 5x_4x_5$	= 0
	$x_1^3 + x_2^3 +$	1 = 0
	-2.3 ≤ x _i	≤ 2.3 , i=1,2
	-3.2 ≤ x.	≤ 3.2 , i=3,4,5
START:	x ₀ =	(-2, 2, 2, -1, -1) (not reasible)
	$I(x_0) =$	3.3546E-4
SOLUTION:	x* =	(-1.717143,1.595709,1.827247,7636413,
	f(x*) =	.05394984787636450)
	r(x*) =	•41E-9
	e(x*) =	•49E-6
	μ =	0
	= (x*) =	
	u* =	.04016/.005222 = 7.69
	$\lambda_{\max}^*/\lambda_{\min}^* =$.16/.16 = 1.02

PROBLEM:		81
CLASSIFICA	TION:	GPR-P1-2
SOURCE:		Powell [52]
NUMBER OF	VARIABLES:	n = 5
NUMBER OF	CONSTRAINTS:	$m_1 = 0$, $m - m_1 = 3$, $b = 10$
OBJECTIVE	FUNCTION:	
	f(x) = exp	$p(x_1x_2x_3x_4x_5)5(x_1^3 + x_2^3 + 1)^2$
CONSTRAINT	S:	
	$x_1^2 + x_2^2 +$	$x_3^2 + x_4^2 + x_5^2 - 10 = 0$
	x ₂ x ₃ - 5x ₄ x ₅	, = 0
	$x_1^3 + x_2^3 +$	1 = 0
	-2.3 ≤ x _i	≤ 2.3 , i=1,2
	-3.2 ≤ x _i	≤ 3.2 , i=3,4,5
START:	x ₀ =	(-2, 2, 2, -1, -1) (not feasible)
	f(x ₀) =	49966
SOLUTION:	X* =	(-1.717142,1.159571,1.827248,7636474,
	f(x*) =	.05394984787636390)
	r(x*) =	.21E-9
	e(x*) =	.11E-5
	μ =	0
	I(x*) =	
	u _{max} /u _{min} =	.04016/.005223 = 7.69
	$\lambda_{\max}^*/\lambda_{\min}^* =$.16/.16 = 1.02

PROBLEM: 83 (Colville No.3)
CLASSIFICATION: QQR-P1-4
SOURCE: Colville [20], Dembo [22], Himmelblau [29]
NUMBER OF VARIABLES: n = 5
NUMBER OF CONSTRAINTS: $m_1 = 6$, $m-m_1 = 0$, $b = 10$
OBJECTIVE FUNCTION:
$f(x) = 5.3578547x_3^2 + .8356891x_1x_5 + 37.293239x_1^2 - 40792.141$
CONSTRAINTS:
$92 \ge a_1 + a_2 x_2 x_5 + a_3 x_1 x_4 - a_4 x_3 x_5 \ge 0$
$20 \ge a_5 + a_6 x_2 x_5 + a_7 x_1 x_2 + a_8 x_3^2 - 90 \ge 0$
$5 \ge a_9 + a_{10}x_3x_5 + a_{11}x_1x_3 + a_{12}x_3x_4 - 20 \ge 0$
$78 \le x_1 \le 102$
$33 \leq x_2 \leq 45$
$27 \le x_i \le 45$, $i=3,4,5$ $a_i:$ cf. Appendix A
START: $x_0 = (78, 33, 27, 27, 27)$ (not feasible) $f(x_0) = -32217$
SOLUTION: x* = (78,33,29.99526,45,36.77581)
$f(x^*) = -30665.53867$
$\mathbf{r}(\mathbf{x}^*) = 0$
$e(x^*) = 0$
μ = 5
$I(x^*) = (3, 4, 7, 8, 15)$
$u_{max}^*/u_{min}^* = 809.4/26.64 = 30.4$
$\lambda_{\max}^*/\lambda_{\min}^* = -$

PROBLEM:			84			
CLASSIFICA	TION:		QQR-P1-5			
SOURCE:	Bet	s	[8], Box [11,12], Himmelblau [29]			
NUMBER OF	VARIABLES:		n = 5			
NUMBER OF	CONSTRAINTS	5:	$m_1 = 6$, $m - m_1 = 0$, $b = 10$			
OBJECTIVE	FUNCTION:					
+						
,	f(x) = -	-a ₁	$-a_2x_1 - a_3x_1x_2 - a_4x_1x_3 - a_5x_1x_4$			
	-	-a ₆	×1×5			
CONSTRAINT	S :					
294000	≥ a ₇ x ₁ +	a.8	$x_1x_2 + a_9x_1x_3 + a_{10}x_1x_4 + a_{11}x_1x_5 \ge 0$			
294000	[≥] ^a 12 ^x 1 ⁻	- a	$13^{x}1^{x}2 + a_{14}^{x}1^{x}3 + a_{15}^{x}1^{x}4 + a_{16}^{x}1^{x}5 \ge 0$			
277200	≥ a ₁₇ ×1 -	- a	$18^{x}1^{x}2 + a_{1}9^{x}1^{x}3 + a_{2}0^{x}1^{x}4 + a_{2}1^{x}1^{x}5 \ge 0$			
0 ≤ x	1 ≤ 1000					
1.2 ≤	$1.2 \le x_2 \le 2.4$					
20 ≤	$20 \le x_3 \le 60$					
9 ≤ x	1 ≤ 9.3					
6.5 ≤	x ₅ ≤ 7		a _i : cf. Appendix A			
START:	xo	=	(2.52, 2, 37.5, 9.25, 6.8)			
	$f(x_0)$	=	-2351243.5 (feasible)			
SOLUTION:	x*	=	(4.53743097, 2.4, 60, 9.3, 7)			
	f(x*)	=	-5280335.133			
	r(x*)	=	0			
	e(x*)	=	0			
	μ	Ξ	5			
	I(x*)	=	(6, 13, 14, 15, 16)			
	u* /u* min	Ξ	.7168E6/.1914E2 = .37E5			
	$\lambda_{\max}^*/\lambda_{\min}^*$	=				

PROBLEM:			85			
CLASSIFICA	TION:		GGI-P1-2			
SOURCE:	Barness	в [2], Caroll [17],	Himmelblau [29]		
NUMBER OF	VARIABLES:		n = 5			
NUMBER OF CONSTRAINTS: $m_1 = 38(3)$, $m-m_1 = 0$, $b = 10$						
OBJECTIVE FUNCTION:						
$f(x) = -5.843E - 7y_{17}(x) + 1.17E - 4y_{14}(x) + 2.358E - 5y_{13}(x)$						
	+ 1.502E-	-6y	16 ^(x) + .0321y ₁₂ (x) + .00423y ₅ (x)		
	+ 1.E-4c.	15($x)/c_{16}(x) + 37.48$	$y_2(x)/c_{12}(x)1365$		
CONSTRAINT	S:					
1.5x ₂ -	x ₃ ≥ 0			704.4148 ≤ x ₁ ≤ 906.3855		
$y_1(x) - 213.1 \ge 0$				$68.6 \le x_2 \le 288.88$		
405.23	- y ₁ (x) ≥	0		$0 \le x_3 \le 134.75$		
$y_{j-2}(x)$	- a _{j-2} ≥	0	, j=4,,19	193 ≤ x ₄ ≤ 287.0966		
^b j-18 -	$y_{j-18}(x)$	\geq	0 , j=20,,35	25 ≤ x ₅ ≤ 84.1988		
y ₄ (x) -	.28/.72y5	(x)	≥ 0			
21 - 34	96y ₂ (x)/c ₁₂	2(x) ≥ 0			
62212/c	17 ^(x) - 110	.6	$-y_1(x) \ge 0$			
y _j (x),	c.(x) , a	j ,	bj: cf. Append	ix A		
START:	xo	=	(900, 80, 115	, 267 , 27)		
	f(x _o)	=	939	(feasible)		
SOLUTION:	X*	=	(705.1803,68.600	05,102.90001,282.324999,		
	$f(x^*)$	=	-1.90513375	37.5850413)		
	r(x*)	=	0			
	e(x*)	=	0			
	μ	=	0			
	I(x*)	=	-			
	u*_/u*	=	-			
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	.56E-3/.46E-6 =	·12E4		

PROBLEM:		86 (Colville No.1)
CLASSIFICA	TION:	PLR-P1-1
SOURCE:	Colville [2	0], Himmelblau [29], Murthagh, Sargent [47]
NUMBER OF	VARIABLES:	n = 5
NUMBER OF	CONSTRAINTS	$m_1 = 10(10)$, $m-m_1 = 0$, $b = 5$
OBJECTIVE	FUNCTION:	
	f(x) = ;	$\sum_{j=1}^{5} e_{j}x_{j} + \sum_{i=1}^{5} \sum_{j=1}^{5} c_{ij}x_{i}x_{j} + \sum_{j=1}^{5} d_{j}x_{j}^{3}$
CONSTRAINT	S:	
	5 ∑a _{ij} xj - j=1 ² i j ^x j -	b _i ≥ 0 , i=1,,10 , i=1,,5
	a _{ij} ,b _i ,c _{ij}	,dj,ej: cf. Appendix A
START:	xo	= (0, 0, 0, 0, 1) (feasible)
	$f(x_0)$	= 20
SOLUTION:	x*	= (.3,.33346761,.4,.42831010,.22396487)
	f(x*)	= -32.34867897
	$r(x^*)$	= .70E-9
	e(x*)	= .94E-8
	μ	= 4
	I(x*)	= (3, 5, 6, 9)
	u*	= 11.84/.1039 = 113.9
	$\lambda_{\max}^*/\lambda_{\min}^*$	= 68.1/68.1 = 1

PROBLEM:		87 (Colville No.6)		
CLASSIFICAT	CION:	GGI-P1-3		
SOURCE:		Colville [20], Himmelblau [29]		
NUMBER OF V	ARIABLES:	n = 6		
NUMBER OF C	CONSTRAINTS:	$m_1 = 0$, $m-m_1 = 4$, $b = 12$		
OBJECTIVE H	FUNCTION:			
	$f(x) = f_1$	$(x) + f_2(x)$		
f ₁ (x) =	30x ₁ , 0: 31x ₁ , 30	$ x_{1} < 300 f_{2}(x) = 29x_{2}, 0 \le x_{2} < 100 29x_{2}, 100 \le x_{2} < 200 30x_{2}, 200 \le x_{2} \le 1000 $		
CONSTRAINTS	5 :			
300 - x ₁	$-\frac{1}{a} x_3 x_4 \cos \theta$	$s(b - x_6) + \frac{c}{a} dx_3^2 = 0$ (a = 131.078)		
$-x_{0} - \frac{1}{2}$	- x _z x ₄ cos(b	(b = 1.48577)		
(c = .90798)				
^5 a	1 3 4 5 111 (5	$(d = \cos 1.47588)$		
$200 - \frac{1}{a}$	$x_3 x_4 sin(b -$	$x_6) + \frac{6}{a} e x_3^2 = 0$ (e = sin1.47588)		
0 ≤ x ₁ ≤	400 340	$0 \le x_3 \le 420$ -1000 $\le x_5 \le 10000$		
0 ≤ x ₂ ≤	: 1000 340	$0 \le x_4 \le 420$ $0 \le x_6 \le .5236$		
START:	x _o	= (390,1000,419.5,340.5,198.175,.5)		
	f(x ₀) =	= 42090 (not feasible)		
SOLUTION:	x* =	= (107.8119,196.3186,373.8307,420,		
		213.0713,.1532920)		
	f(x*) =	= 8927.5977		
	r(x*) =	= .10E-6		
	e(x*) =	= .74E-6		
	μ =	= 1		
	I(x*) =	= (10)		
	u* /u* =	= 30/.23E-6 = .13E9		
	$\lambda_{\max}^*/\lambda_{\min}^* =$	017/.017 = 1		

PROBLEM:			88 - 92 (time-optimal heat conduction)		
CLASSIFICA	TION:		QGR-P1-(1,,5)		
SOURCE:			Schittkowski [54]		
NUMBER OF	VARIABLES:		n = 2,,6		
NUMBER OF	CONSTRAINTS	5:	$m_1 = 1$, $m - m_1 = 0$, $b = 0$		
OBJECTIVE	FUNCTION:				
	f(x) = ;	n ∑ 1=1	x _i ²		
CONSTRAINT	:S :				
$e^2 - h($	x) ≥ 0				
ε =	.01				
h(x)	$= \int_{0}^{1} (\sum_{i=1}^{30}$	α _j	$(s)\rho_j(x) - k_o(s))^2 ds$		
α _j (s	$\mu = \mu_j^2 A_j c c$	os(µjs)		
ρ _j (x	$(= -\mu_j^{-2})$	exp	$(-\mu_j^2 \sum_{i=1}^n x_i^2) - 2\exp(-\mu_j^2 \sum_{i=2}^n x_i^2) + \dots$		
	+ $(-1)^{n-1} 2 \exp(-\mu 2x^2 + (-1)^n)$				
k _o (s) = .5(1 -	s ²	·)		
A. =	2sinµj/(µj	j +	$sin\mu_j cos\mu_j$), μ_j : μ tan $\mu = 1$		
START:	xo	=	$(.5,5,, (-1)^{n+1}.5)$		
	f(x _o)	=	.25n (not feasible)		
SOLUTION:	x*	=	(cf. Appendix A)		
	f(x*)	=	1.36265681		
	r(x*)	\leq	.30E-10 (cf. Appendix A)		
	e(x*)	5	.16E-2 (cf. Appendix A)		
	μ	=	1		
	I(x*)	=	(1)		
	u*	=	1059.8/1059.8 = 1		
	$\lambda_{\max}^*/\lambda_{\min}^*$	\leq	.11E9 (cf. Appendix A)		

PROBLEM:			93 (transformer design)		
CLASSIFICA	TION:		PPR-P1-6		
SOURCE:			Bartholomew-Biggs [4]		
NUMBER OF	VARIABLES:		n = 6		
NUMBER OF	CONSTRAINTS	:	$m_1 = 2$, $m-m_1 = 0$, b = 6	
OBJECTIVE FUNCTION:					
f(x) =	.0204x ₁ x ₄	(x ₁	$+ x_2 + x_3) + .0187x_2x_3(x_1)$	+ 1.57x ₂ + x ₄)	
	+ .0607x ₁	×4×	$x_5^2(x_1 + x_2 + x_3)$		
	+ .0437x ₂	×3×	$x_6^2(x_1 + 1.57x_2 + x_4)$		
CONSTRAINT	S :	n (2 shqar			
.001x ₁ x	2 ^x 3 ^x 4 ^x 5 ^x 6 -	2.	07 ≥ 0		
$100062x_1x_4x_5^2(x_1 + x_2 + x_3)$					
	00058x	2 ^x 3	$x_6^2(x_1 + 1.57x_2 + x_4) \ge$	0	
0 ≤ x.	, i=1,.	,	6		
START:	x	=	(5.54,4.4,12.02,11.82,.70	2,.852)	
	$f(x_0)$	=	137.066	(feasible)	
SOLUTION:	x*	=	(5.332666,4.656744,10.432	99,12.08230,	
			.7526074,.87865084)		
	f(x*)	=	135.075961		
	$r(x^*)$	=	•77E-7		
	e(x*)	=	•77E-6		
	μ	=	2		
	I(x*)	=	(1,2)		
	u* /u* min	=	71.46/62.15 = 1.15		
	$\lambda_{max}^*/\lambda_{min}^*$	=	118.9/.21 = 562.9		

PROBLEM:		95 - 98
CLASSIFICAT	CION:	LQR-P1-(1,,4)
SOURCE:		Himmelblau [29], Holzman [32]
NUMBER OF V	ARIABLES:	n = 6
NUMBER OF C	CONSTRAINTS	$m_1 = 4$, $m-m_1 = 0$, $b = 12$
OBJECTIVE H	FUNCTION:	
f(x) =	4.3x ₁ + 31	$.8x_2 + 63.3x_3 + 15.8x_4 + 68.5x_5 + 4.7x_6$
CONSTRAINTS	* •) •	
17.1x ₁ +	- 38.2x ₂ + 2	$204.2x_3 + 212.3x_4 + 623.4x_5 + 1495.5x_6$
- 169x ₁ x	- 3580x ₃ x	$x_5 - 3810x_4x_5 - 18500x_4x_6 - 24300x_5x_6 \ge b_1$
17.9x ₁ +	- 36.8x ₂ + 1	$13.9x_3 + 169.7x_4 + 337.8x_5 + 1385.2x_6$
- 139x ₁ x	- 2450x ₄ x	$x_5 - 16600x_4x_6 - 17200x_5x_6 \ge b_2$
_073v _	-70v - 810	r + 26000r r > h
-27,5%2 -	- 10x ₄ = 019	x5 + 20000x4x5 2 03
159.9x ₁	- 311x ₂ + 5	$b87x_4 + 391x_5 + 2198x_6 - 14000x_1x_6 \ge b_4$
0 ≤ x ₁	≤ . 31 ,	$0 \le x_3 \le .068, 0 \le x_5 \le .028$
0 ≤ x ₂	≤ .046 ,	$0 \le x_4 \le .042, 0 \le x_6 \le .0134$
4 differ	ent data ve	ctors b : cf. Appendix A
START:	xo	= (0 , 0 , 0 , 0 , 0 , 0) (not feasible)
	$f(x_0)$	= 0
SOLUTION:	x*	= (0,0,0,0,0,.0033233033) (95,96)
		= (.2685649,0,0,0,.028,.0134) (97,98)
	f(x*)	= .015619514 (95,96) 3.1358091 (97,98)
	$r(x^*)$	= .21E-9 (95,96) 0
	e(x*)	= 0
	μ	= 6
	I(x*)	= (1,5,6,7,8,9) (95,96) (1,6,7,8,15,16)
	u*	= 66.8/.003=.2E5(95,96) 200/.251=.8E3
	$\lambda_{max}^*/\lambda_{min}^*$	= -

PROBLEM:			99
CLASSIFICAT	FION:		GGR-P1-3
SOURCE:			Betts [8]
NUMBER OF V	ARIABLES:		n = 7
NUMBER OF (CONSTRAINTS	:	$m_1 = 0$, $m-m_1 = 2$, $b = 14$
OBJECTIVE H	FUNCTION:		
	f(x) = -x	r ₈ (x) ²
r ₁ (x) =	0 , r _i (x)		$a_{i}(t_{i} - t_{i-1})\cos x_{i-1} + r_{i-1}(x), i=2,,8$
CONSTRALNTS	5:		
	$q_8(x) - 1.1$	E5	= 0
	s ₈ (x) - 1.1	E3	$0 \le x_i \le 1.58$, $i=1,\ldots,7$
q ₁ (x) =	$s_1(x) = 0$		
q _i (x) =	.5(t _i - t _i	-1)	$(a_{i}sin x_{i-1} - b) + (t_{i} - t_{i-1})s_{i-1}(x)$
	+ q _{i-1} (x)		
s _i (x) =	$(t_i - t_{i-1})$)(a	$i^{sinx}_{i-1} - b) + s_{i-1}(x)$, $i=2,,8$
a _i ,t _i ,b	: cf. Appe	end	ix A
START:	xo		(.5,.5,.5,.5,.5,.5)
	$f(x_0)$	=	7763605E9 (not feasible)
SOLUTION:	x*	=	(.5424603,.5290159,.5084506,.4802693,
			.4512352,.4091878,.3527847)
	f(x*)	=	831079892E9
	r(x*)	=	.30E-7
	e(x*)	=	$.31E4$, $ \nabla f(x^*) = .32E9$
	μ	Ξ	0
	I(x*)	=	-
	u*_/u*	=	.1934E5/.4194E2 = .46E3
	$\lambda_{max}^*/\lambda_{min}^*$	=	.50E9/.84E8 = 5.95

PROBLEM:			100
CLASSIFICA	TION:		PPR-P1-7
SOURCE:	Asaadi	[1]	, Charalambous [18], Wong [59]
NUMBER OF	VARIABLES:		n = 7
NUMBER OF	CONSTRAINTS	:	$m_1 = 4$, $m-m_1 = 0$, $b = 0$
OBJECTIVE	FUNCTION:	1.41.4116.2	
	f(x) = (+	×1 10	$-10)^{2} + 5(x_{2} - 12)^{2} + x_{3}^{4} + 3(x_{4} - 11)^{2}$ $0x_{5}^{6} + 7x_{6}^{2} + x_{7}^{4} - 4x_{6}x_{7} - 10x_{6} - 8x_{7}$
CONSTRAINT	S :		
	$127 - 2x_1^2$ $282 - 7x_1$ $196 - 23x_1$ $-4x_1^2 - x_2$	- 3 - 2 +	$3x_{2}^{4} - x_{3} - 4x_{4}^{2} - 5x_{5} \ge 0$ $5x_{2} - 10x_{3}^{2} - x_{4} + x_{5} \ge 0$ $x_{2}^{2} - 6x_{6}^{2} + 8x_{7} \ge 0$ $3x_{1}x_{2} - 2x_{3}^{2} - 5x_{6} + 11x_{7} \ge 0$
START:	x _o	=	(1,2,0,4,0,1,1)
	1(x ₀)		(leasible)
SOLUTION:	x*	=	(2.330499,1.951372,4775414,4.365726,
			6244870,1.038131,1.594227)
	I (x*)	=	680.6300573
	$r(x^{\star})$	=	.90E-7
	e(x*)	=	·)0E-0
	L L(rrt)	Ш	
	⊥(X^) 11* /11*	_	1.140/.3686 = 3.09
	\max' min $\lambda_{max}^*/\lambda_{min}^*$	=	46.6/4.34 = 10.7

PROBLEM:		101 - 1	03		
CLASSIFICATIO	N :	PPR-P1-	(8,9,10)		
SOURCE:		Beck, E	cker [5], 1	Dembo [22]	
NUMBER OF VAR	IABLES:	n = 7			
NUMBER OF CON	STRAINTS:	m ₁ = 6	, m-1	m ₁ = 0	, b = 14
OBJECTIVE FUN	CTION: 10	1 : a=	25 , 102 :	a=.125 , 10)3 : a=.5
f(x) = 1 +	$ x_1 x_2^{-1} x_4^2 $	$x_6 - 3x_7 a_7 - 1x_5 - 2x_5$	+ $15x_1^{-1}x_2^{-1}$ 6 + $25x_1^{2}x_2^{-1}$	$-2x_{3}x_{4}x_{5} - 1x_{7}$	5 -2_{x_7}
CONSTRAINTS:					· 1
15x ₁ .5	$x_3^{-1}x_6^{-2}x_7$ $\cdot 2x_2^{-1}x_3x_4$	7x ₁ ³ 5 _{x 2/3}	$x_2 x_3^{-2} x_6 x_7^{-2} x_$, 5 D	
1 - 1.3x ₁ -	$5x_{2}x_{3} - 1x_{5}$ $3 \cdot 1x_{1} - 1x_{2}$	$-1_{x_{6}}$	$8x_{3}x_{4}^{-1}x_{5}^{-1}$ $-1x_{6}^{1/3} \ge$	1 _{x6} ² 0	
$1 - 2x_1x_3$	$1.5_{x_5x_6} - 1_{x_7}$	$\frac{4/3}{5}6$	1x ₂ x ₃ ^{-•5} x ₅ x 5x ₂ ⁻² x ₃ x ₅ x ₆	$x_6^{-1}x_7^{5}$	
$12x_1^{-2}$	$x_2x_4 - 1x_5 \cdot 5_3$ $\cdot 4x_1 - 3x_2 - 2$	² x ₃ x ₅ x ₇ ³	$\cdot 3x_1 \cdot 5x_2^2 x_3^{/4} - \cdot 5x_3^{-2}$	$\frac{1}{3_{x_4}} \frac{1}{3_{x_7}} \frac{1}{4_x}$	-2/3 5 0
$100 \leq f(x)$	≤ 3000 , .	1 ≤ x.	≤ 10 , i=1,	,6, .01 ≤	x ₇ ≤ 10
START: x f	• = (x ₀) =	(6 , 6 2205.8	,6,6, 68,2206.8	6,6,6) 389,2208.8	(not feas.) 386
SOLUTION: x	* =	(cf. A	ppendix A)		
	101	1	102	1	03
f(x*)	= 1809.76	5476	911.880571	543.6	67958
r(x*)	= .10E-10)	.27E-10	.61E-	11
e(x*)	59E-6		.14E-6	.92E-	7
μ	= 3		3	4	
I(x*)	= (2,3,13	5)	(1,2,3)	(1,2,	3,4)
u*	= 4567/.8	81E-6	2173/21.13	1287/	38.71
$\lambda_{max}^*/\lambda_{min}^*$	= .43E4/.	51E2=85	•23E4/•32E	2=73 .46E3	/.88E2=5.2

PROBLEM:		104 (optimal reactor design)				
CLASSIFICA	TION:	PPR-P1-11				
SOURCE:		Dembo [22], Rijckaert [53]				
NUMBER OF	VARIABLES:	n = 8				
NUMBER OF (CONSTRAINTS:	$m_1 = 6$, $m-m_1 = 0$, $b = 16$				
OBJECTIVE FUNCTION:						
f(x) =	$f(x) = .4x_1 \cdot \frac{67}{7}x_7 - \frac{67}{7} + .4x_2 \cdot \frac{67}{8}x_8 - \frac{67}{7} + 10 - x_1 - x_2$					
CONSTRAINTS	5:					
1058	$38x_5x_71x_1$	≥ 0				
1058	^{38x} 6 ^x 81x1	$1x_2 \ge 0$				
1 - 4x ₃ 3	$x_5^{-1} - 2x_3^{7}$	$x_5^{-1}0588x_3^{-1.3}x_7 \ge 0$				
$1 - 4x_4^{-3}$	$x_6^{-1} - 2x_4^{7}$	$x_6^{-1}0588x_4^{-1.3}x_8 \ge 0$				
1 ≤ f((x) ≤ 4.2					
.1 ≤ x _i ≤ 10 , i=1,,8						
START:	x ₀ =	(6,3,.4,.2,6,6,1,.5) (not feasible)				
	f(x ₀) =	3.65				
SOLUTION:	x* =	(6.465114,2.232709,.6673975,.5957564,				
		5.932676,5.527235,1.013322,.4006682)				
	f(x*) =	3.9511634396				
	r(x*) =	.58E-10				
	e(x*) =	•31E-10				
	μ =	4				
	I(x*) =	(1,2,3,4)				
	u* =	6.206/.8472 = 7.32				
	$\lambda_{\max}^*/\lambda_{\min}^* =$	1.87/.043 = 43.2				

PROBLEM:		105 (maximum-likelihood estimation)			
CLASSIFICAT	TION:	GLR-P1-2			
SOURCE:		Bracken, McCormick [13]			
NUMBER OF V	ARIABLES:	n = 8			
NUMBER OF C	CONSTRAINTS:	$m_1 = 1(1)$, $m-m_1 = 0$, $b = 16$			
OBJECTIVE H	FUNCTION:				
f(x) =	235 -∑ ln((a i=1	$i(x) + b_i(x) + c_i(x)) / \sqrt{2\pi}$			
	$a_i(x) = x_1$	$/x_6 \exp(-(y_1 - x_3)^2 / (2x_6^2))$			
	$b_i(x) = x_2$	$/x_7 \exp(-(y_1 - x_4)^2 / (2x_7^2))$, i=1,,235			
	$c_{i}(x) = (1)$	$-x_2 - x_1)/x_8 \exp(-(y_1 - x_5)^2/(2x_8^2))$			
y _i : cf.	. Appendix A				
CONSTRAINTS	5:				
1 - x ₁ -	- x ₂ ≥ 0				
.001 ≤ c	x _i ≤ .499 ,	$i=1,2$ $100 \le x_3 \le 180$			
130 ≤ x	t ≤ 210 1	$70 \le x_5 \le 240$ $5 \le x_i \le 25$, $i=6,7,8$			
START:	xo	= (.1,.2,100,125,175,11.2,13.2,15.8)			
	$f(x_0)$	= 1297.6693 (feasible)			
SOLUTION:	x*	= (.4128928,.4033526,131.2613,164.3135,			
		217.4222,12.28018,15.77170,20.74682)			
	f(x*)	= 1138.416240			
	r(x*)	= 0			
	e(x*)	= 0			
	μ	= 0			
	I(x*)				
	u*_/u* max/umin				
	$\lambda_{\max}^*/\lambda_{\min}^*$	= .26E4/.28E-2 = .92E6			
PROBLEM:		106 (heat exchanger design)			
-------------------------	--	---	--	--	--
CLASSIFICAT	ION:	LQR-P1-5			
SOURCE:		Avriel, Williams [2], Dembo [22]			
NUMBER OF V	ARIABLES:	n = 8			
NUMBER OF C	ONSTRAINTS:	$m_1 = 6(3)$, $m-m_1 = 0$, $b = 16$			
OBJECTIVE F	UNCTION:				
	$f(x) = x_1$	$+ x_{2} + x_{3}$			
CONSTRAINTS	0 0				
	10025(x	$+ x_6) \ge 0$			
	10025(x	$(x_5 + x_7 - x_4) \geq 0$			
	101(x ₈ -	$-x_5) \geq 0$			
	x ₁ x ₆ - 833.3	$33252x_4 - 100x_1 + 83333.333 \ge 0$			
	$x_2 x_7 - 1250 x_7$	$x_5 - x_2 x_4 + 1250 x_4 \ge 0$			
	$x_3 x_8 - 1250000 - x_3 x_5 + 2500 x_5 \ge 0$				
$100 \le x_1 \le 10000$					
	1000 ≤ x _i	≤ 10000 , i=2,3			
	10 ≤ x _i :	≤ 1000 , i=4,,8			
START:	x _o :	= (5000,5000,5000,200,350,150,225,425)			
	$f(x_0) =$	= 15000 (not feasible)			
SOLUTION:	x* :	= (579.3167,1359.943,5110.071,182,0174,			
		295.5985,217.9799,286.4162,395,5979)			
	f(x*) =	= 7049.330923			
	r(x*) =	= 0			
	e(x*) =	= .19E-4			
	μ	= 6			
	I(x*)	= (1,2,3,4,5,6)			
	u* /u* min	= 5210/.00848 = .61E6			
	$\lambda_{\max}^*/\lambda_{\min}^*$	= .81E-3/.38E-3 = 2.11			

PROBLEM:		1(07 (static power scheduling)
CLASSIFICA	rion:	P	'GR-P1-4
SOURCE:		Ba	artholomew-Biggs [4]
NUMBER OF V	VARIABLES:	n	. = 9
NUMBER OF (CONSTRAINTS:	m,	$m_1 = 0$, $m_1 = 6$, $b = 8$
OBJECTIVE I	FUNCTION:		
f(x) =	3000x ₁ + 1	000	$x_1^3 + 2000x_2 + 666.667x_2^3$
CONSTRAINT	S :		
.4 - x ₁	$+ 2 c x_5^2 - x_5^2$	5 ^x 6	$(dy_1 + cy_2) - x_5 x_7 (dy_3 + cy_4) = 0$
.4 - x ₂	$+ 2 c x_6^2 + x_6^2$	5 ^x 6	$(dy_1 - cy_2) + x_6 x_7 (dy_5 - cy_6) = 0$
.8 + 2c	$x_7^2 + x_5 x_7 (d)$	ly3.	$-cy_4) - x_6 x_7 (dy_5 + cy_6) = 0$
.2 - x ₃	$+ 2dx_5^2 + 2$	5 ^x 6	$(cy_1 - dy_2) + x_5 x_7 (cy_3 - dy_4) = 0$
.2 - x4	$+ 2dx_6^2 - 3$	5 ^x 6	$(cy_1 + dy_2) - x_6 x_7 (cy_5 + dy_6) = 0$
337 +	$2dx_7^2 - x_5^3$	c7(c)	$y_3 + dy_4) + x_6 x_7 (cy_5 - dy_6) = 0$
0 ≤ x _i	, i=1,2 ,		.90909 ≤ x _i ≤ 1.0909 , i=5,6,7
	$y_1 = \sin x_8$	9	$y_2 = \cos x_8$, $y_3 = \sin x_9$
	$y_4 = \cos x_9$,	$y_5 = \sin(x_8 - x_9)$, $y_6 = \cos(x_8 - x_9)$
	c = (48.4/50)).170	6)sin.25, $d = (48.4/50.176)cos.25$
START:	× o	=	(.8,.8,.2,.2,1.0454,1.0454,0,0)
	$f(x_0)$	= 4	4853.3335 (not feasible)
SOLUTION:	x*	=	(.6670095,1.022388,.2282879,.1848217,
			1.090900,1.090900,1.069036,.1066126,
	$f(x^*)$	=]	5055.0118033387867)
	$r(x^*)$	=	.18E-9
	e(x*)	= (0
	μ	= 3	3
	I(x*)	=	(6 , 7 , 8)
	u*	= _	5208/0
	$\lambda_{\max}^*/\lambda_{\min}^*$		_

DDODITIN			100	
PROBITEM:			108	
CLASSIFICA	TION:		QQR-P1-6	
SOURCE:			Himmelblau	[29], Pearson [49]
NUMBER OF	VARIABLES:		n = 9	
NUMBER OF	CONSTRAINTS	5:	$m_1 = 13$	$, m-m_1 = 0 , b = 1$
OBJECTIVE	FUNCTION:			
f(x) =	$5(x_1x_4)$	-	^x 2 ^x 3 ⁺ ^x 3 ^x 9	$-x_5x_9 + x_5x_8 - x_6x_7$)
CONSTRAINT	!S :			
$1 - x_3^2$	$^{2} - x_{4}^{2} \ge$	0		$1 - x_9^2 \ge 0$
$1 - x_5^2$	² - x ₆ ² ≥	0		$1 - x_1^2 - (x_2 - x_9)^2 \ge 0$
1 - (x ₁	$-x_5)^2 - ($	(x ₂	$-x_6)^2 \ge$	0
1 - (x ₁	$-x_7)^2 - ($	(x ₂	- x ₈) ² ≥	0
1 - (x ₃	$(-x_5)^2 - ($	(x ₄	- x ₆) ² ≥	0
1 - (x ₃	$(-x_7)^2 - ($	(x ₄	- x ₈) ² ≥	0
$1 - x_7^2$	- (x ₈ - x ₉	₉) ²	≥ 0	$x_1 x_4 - x_2 x_3 \ge 0$
x ₃ x ₉ ≥	0			-x ₅ x ₉ ≥ 0
x ₅ x ₈ -	x ₆ x ₇ ≥ 0			0 ≤ x ₉
START:	x	=	(1,1,1,1,1,1	,1,1,1,1) (not feasible)
	f(x _o)	=	0	
SOLUTION:	X*	=	(.8841292,	.4672425,.03742076,.9992996,
			.8841292,	.4672424,.03742076,.9992996,
			.26E-19)	
	f(x*)	=	866025403	38
	r(x*)	=	.39E-9	e(x*) = .33E-11
	u	=	9	$I(x^*) = (1.3.4.6.7.9.11.$
	u* /u*:	-	.1443/0	12,14)
	$\lambda_{\max}^*/\lambda_{\min}^*$	Ξ		

PROBLEM:	109
CLASSIFICATION:	PGR-P1-5
SOURCE:	Beuneu [9]
NUMBER OF VARIABLES:	n = 9
NUMBER OF CONSTRAINTS:	$m_1 = 4(2)$, $m-m_1 = 6$, $b = 16$
OBJECTIVE FUNCTION:	
$f(x) = 3x_1 + 1.E - 6$	$5x_1^3 + 2x_2 + .522074E - 6x_2^3$
CONSTRAINTS:	
x ₄ - x ₃ + .55 ≥ 0	x ₃ - x ₄ + .55 ≥ 0
$2250000 - x_1^2 - x_8^2$	≥ 0 2250000 - $x_2^2 - x_9^2 \geq 0$
$x_5 x_6 sin(-x_3 - \frac{1}{4}) + x_5$	$x_5 x_7 \sin(-x_4 - \frac{1}{4}) + 2bx_5^2 - ax_1 + 400a = 0$
$x_5 x_6 sin(x_3 - \frac{1}{4}) + x_6$	$x_7 \sin(x_3 - x_4 - \frac{1}{4}) + 2bx_6^2 - ax_2 + 400a = 0$
$x_5 x_7 sin(x_4 - \frac{1}{4}) + x_6$	$x_7 \sin(x_4 - x_3 - \frac{1}{4}) + 2bx_7^2 + 881.779a = 0$
$ax_8 + x_5 x_6 cos(-x_3 -$	$\frac{1}{4}$) + $x_5 x_7 \cos(-x_4 - \frac{1}{4}) - 200a$
	$-2cx_5^2 + .7533E - 3ax_5^2 = 0$
$ax_9 + x_5 x_6 \cos(x_3 - \frac{1}{2})$	$x_{1} + x_{6}x_{7}\cos(x_{3} - x_{4} - \frac{1}{4}) - 2cx_{6}^{2}$
	$+ .7533E - 3ax_6^2 - 200a = 0$
$x_5 x_7 \cos(x_4 - \frac{1}{4}) + x_6$	$5x_7 \cos(x_4 - x_3 - \frac{1}{4}) - 2cx_7^2 + 22.938a$
	$+ .7533E - 3ax_7^2 = 0$
$0 \le x_i$, i=1,2	$55 \le x_i \le .55$, i=3,4
$196 \le x_i \le 252$, i=5	$-400 \le x_i \le 800$, $i=8,9$
a = 50.176 , b =	= sin.25 , c = cos.25
START: $x_0 = (0, \dots$,0) $f(x_0) = 0$ (not feasible)
SOLUTION:	$f(x^*) = 5362.06928$
x* = (cf. A	ppendix A)
r(x*) = .36E-7	$e(x^*) = 0$
μ = 3	$I(x^*) = (1, 16, 17)$
u* = 12.53/	.13E-10 = .95E12
$\lambda * max / \lambda * min = -$	

DRODITIK					
LUORTEM:			110		
CLASSIFICATION:			GBR-P1-1		
SOURCE:			Himmelblau [29], Paviani [48]		
NUMBER OF	VARIABLES:		n = 10		
NUMBER OF	CONSTRAINT	S :	$m_1 = 0$, $m - m_1 = 0$, $b = 20$		
OBJECTIVE	OBJECTIVE FUNCTION:				
f(x) =	= ∑ [(ln(: i=1	×i	- 2)) ² + (ln(10 - x _i)) ² - (I x _i) ² i=1		
2	.001 ≤ x	i	≤ 9.999 , i=1,,10		
START:	x _o f(x _o)	=	(9,,9) (feasible) -43.134337		
SOLUTION:	x*	-	(9.350256559.35025655)		
	f (+ *)		-15 778/6071		
	$\perp (X^{*})$		-49.11040911		
	r(x*)	Ξ	0		
	e(x*)	=	0		
	u 👘	=	0		
	I(x*)	н	-		
	u* /u* max /u*	=	-		
	$\lambda_{\max}^{\star}/\lambda_{\min}^{\star}$	=	6.92/6.52 = 1.06		

PROBLEM:			111
CLASSIFICA	ATION:		GGR-P1-4
SOURCE:	Bracken	, I	AcCormick [13], Himmelblau [29], White [58]
NUMBER OF	VARIABLES:		n = 10
NUMBER OF	CONSTRAINT	'S :	$m_1 = 0$, $m - m_1 = 3$, $b = 20$
OBJECTIVE	FUNCTION:		
f(x) =	10 ∑ exp(j=1	xj)	$(c_j + x_j - ln(\sum_{k=1}^{10} exp(x_k)))$
cj: c	f. Appendi	x A	
CONSTRAINT	!S :		
exp(x ₁)	+ 2exp(x ₂) +	$-2\exp(x_3) + \exp(x_6) + \exp(x_{10}) - 2 = 0$
exp(x ₄)	+ 2exp(x ₅) +	$exp(x_6) + exp(x_7) - 1 = 0$
exp(x ₃)	+ exp(x ₇)	+	$exp(x_8) + 2exp(x_9) + exp(x_{10}) - 1 = 0$
-100 ≤	x, ≤ 1	00	, i=1,,10
START:	xo	=	(-2.3,, -2.3) (not feasible)
	$f(x_0)$	=	-21.015
SOLUTION:	x*	=	(-3.201212,-1.912060,24444136.537489.
			7231524,-7.267738,-3.596711,-4.017769.
			-3.287462,-2.335582)
	f(x*)	=	-47.76109026
	r(x*)	=	•34E-9 e(x*) = •14E-3
	ц	=	= -
	u* /u* max /umin	=	15.22/9.785 = 1.56
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	.11/.70E-3 = 160.1

PROBLEM:			112 (chemical equilibrium)
CLASSIFIC	ATION:		GLR-P1-3
SOURCE:	Bracken, M	eCo	rmick [13], Himmelblau [29], White [58]
NUMBER OF	VARIABLES:		n = 10
NUMBER OF	CONSTRAINTS	5:	$m_1 = 0$, $m - m_1 = 3(3)$, $b = 10$
OBJECTIVE	FUNCTION:		
f(x) =	10 = ∑ x _j (c j=1	; +	$ln \frac{x_j}{x_1 + \cdots + x_{10}}$)
cj: c	ef. Appendiz	c A	
CONSTRAINT	:S :		
	x ₁ + 2x ₂ +	- 2x	$x_3 + x_6 + x_{10} - 2 = 0$
	x ₄ + 2x ₅ +	×6	$x_7 - 1 = 0$
	x ₃ + x ₇ +	x8	$+2x_9 + x_{10} = 0$
	1.E-6 ≤	xi	, i=1,,10
START:	X	=	(.1 1) (not feasible)
	$f(x_0)$	=	-20.961
SOLUTION:	 x*	=	(.017735480820018088256467233256E-3
			.4907851,.4335469E-3,.01727298,
			.007765639,.0198492905269826)
	f(x*)	=	-47.707579
	r(x*)	=	•23E-7 e(x*) = •43E-6
	ц	=	2 $I(x^*) = (4, 6)$
	u* /u* max min	=	15.02/.262E-3 = .57E5
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	191/8.98 = 21.3

DECETEN		
PROBLEM:		112 (Wong No.2)
CLASSIFICA	TION:	QQR-P1-7
SOURCE:	Asaa	di [1], Charalambous [18], Wong [59]
NUMBER OF	VARIABLES:	n = 10
NUMBER OF	CONSTRAINT	S: $m_1 = 8(3)$, $m - m_1 = 0$, $b = 0$
OBJECTIVE	FUNCTION:	
f(x) =	$x_1^2 + x_2$	$x^{2} + x_{1}x_{2} - 14x_{1} - 16x_{2} + (x_{3} - 10)^{2}$
	+ 4(x ₄ -	$(5)^{2} + (x_{5} - 3)^{2} + 2(x_{6} - 1)^{2} + 5x_{7}^{2}$
	+ 7(x ₈ -	$(11)^{2} + 2(x_{9} - 10)^{2} + (x_{10} - 7)^{2} + 45$
CONSTRAINT	S :	
105 - 4	$x_1 - 5x_2 +$	$3x_7 - 9x_8 \ge 0$
-10x ₁ +	$8x_2 + 17x$	$7 - 2x_8 \ge 0$
8x ₁ - 2	$x_2 - 5x_9 +$	$2x_{10} + 12 \ge 0$
-3(x ₁ -	$(2)^2 - 4(x)$	$(2 - 3)^2 - 2x_3^2 + 7x_4 + 120 \ge 0$
$-5x_1^2$ -	$8x_2 - (x_3)$	$(-6)^2 + 2x_4 + 40 \ge 0$
5(x1	$-8)^2 - 2(1)^2$	$(x_2 - 4)^2 - 3x_5^2 + x_6 + 30 \ge 0$
-x ₁ ² -	$2(x_2 - 2)^2$	$+ 2x_1x_2 - 14x_5 + 6x_6 \ge 0$
3x1 - 6	$x_{2} - 12(x_{0})$	$(-8)^2 + 7x_{10} \ge 0$
	2 9	10
START:	xo	= (2,3,5,5,1,2,7,3,6,10) (feasible)
	f(x _o)	= 753
SOLUTION:	х*	= (2.171996,2.363683,8.773926,5.095984,
		.9906548,1.430574,1.321644,9.828726,
		8.280092,8.375927)
	f(x*)	= 24.3062091
	r(x*)	= .12E-8 e(x*) = .46E-9
	u	$= 6 \qquad I(x^*) = (1,2,3,4,5,7)$
	u*	= 1.717/.02055 = 83.5
	$\lambda_{\max}^*/\lambda_{\min}^*$	= 7.79/2.24 = 3.48

PROBLEM:	114 (alkylation process)
CLASSIFICATION:	QGR-P1-6
SOURCE:	Bracken, McCormick [13]
NUMBER OF VARIABLES:	n = 10
NUMBER OF CONSTRAINTS:	$m_1 = 8(4)$, $m-m_1 = 3(1)$, $b = 20$
OBJECTIVE FUNCTION:	
$f(x) = 5.04x_1 + .$	$035x_2 + 10x_3 + 3.36x_5063x_4x_7$
CONSTRAINTS:	
$g_1(x) = 35.82$	$222x_{10} - bx_9 \ge 0$
$g_2(x) = -133 + 3x$	$a_7 - a_{10} \ge 0$
$g_3(x) = -g_1(x) +$	$x_{9}(1/b - b) \ge 0$
$g_4(x) = -g_2(x) +$	$(1/a - a)x_{10} \ge 0$
$g_5(x) = 1.12x_1 +$	$.13167x_1x_800667x_1x_8^2 - ax_4 \ge 0$
$g_6(x) = 57.425 +$	$1.098x_8038x_8^2 + .325x_6 - ax_7 \ge 0$
$g_7(x) = -g_5(x) +$	$(1/a - a)x_4 \ge 0$
$g_8(x) = -g_6(x) +$	$(1/a - a)x_7 \ge 0$
$g_9(x) = 1.22x_4 -$	$x_1 - x_5 = 0$
$g_{10}(x) = 98000x_3/($	$x_4 x_9 + 1000 x_3) - x_6 = 0$ $a = .99$
$g_{11}(x) = (x_2 + x_5)$	$/x_1 - x_8 = 0$ $b = .9$
bounds: cf. Append	lix A
START: x _o =	: (1745,12000,110,3048,1974,89.2,92.8,8,
f(x ₀) =	= -872.3872 ∖ 3.6,145) (not feasible)
SOLUTION: x* =	(1698.096,15818.73,54.10228,3031.226,
	2000,90.11537,95,10.49336,1.561636,
	153.53535)
f(x*) =	-1768.80696
r(x*) =	$e(x^*) = .16E-5$
u =	$I(x^*) = (2,3,5,6,23,25)$
u _{max} /u _{min} =	= 311.8/.6778 = 460
$\lambda_{\max}^*/\lambda_{\min}^* =$.14E-4/.14E-4 = 1

PROBLEM:		116 (3-stage membrane separation)		
CLASSIFICA	TION:	LQR-P1-6		
SOURCE:		Dembo [21,22]		
NUMBER OF	VARIABLES:	n = 13		
NUMBER OF	CONSTRAINTS	$m_1 = 15(5)$, $m-m_1 = 0$, $b = 26$		
OBJECTIVE	FUNCTION:			
f(x) = x	x ₁₁ + x ₁₂ +	^x 13		
CONSTRAINT	S:			
x ₃ - x ₂	≥ 0	$x_2 - x_1 \ge 0$		
100	$2x_7 + .002x_8$	$_{3} \geq 0$ 50 \leq f(x) \leq 250		
× ₁₃ - 1	.262626x ₁₀ -	$1.231059 x_3 x_{10} \ge 0$		
x ₅ 0	3475x ₂ 97	$75x_2x_5 + .00975x_2^2 \ge 0$		
x ₆ 0	3475x ₃ 97	$75x_3x_6 + .00975x_3^2 \ge 0$		
x ₅ x ₇ - :	$x_{1}x_{8} - x_{4}x_{7}$	$+ x_4 x_8 \ge 0$		
100	$2(x_2x_9 + x_5x_9)$	$x_8 - x_1 x_8 - x_6 x_9) - x_5 - x_6 \ge 0$		
$x_2x_9 - x_3x_{10} - x_6x_9 - 500x_2 + 500x_6 + x_2x_{10} \ge 0$				
x ₂ 9	002(x ₂ x	$0 - x_3 x_{10}) \ge 0$		
x ₄ 03	3475x ₁ 97	$5x_1x_4 + .00975x_1^2 \ge 0$		
x ₁₁ - 1	.262626x ₈ +	$1.231059x_1x_8 \ge 0$		
x ₁₂ - 1	.262626xg +	$1.231059x_{2}x_{9} \geq 0$ bounds: cf. Appendix A		
START:	x _o	= (.5,.8,.9,.1,.14,.5,489,80,650,450,150,		
	f(x ₀) =	= 450 \ 150,150) (not feasible)		
SOLUTION:	x* =	= (.8037703,.8999860,.9709724,.09999952,		
		.1908154,.4605717,574.0803,74.08043,		
		500.0162,.1,20.23413,77.34755,.00673039)		
	f(x*) =	97.588409		
	r(x*) =	$e(x^*) = 0$		
	u =	$I(x^*) = (3, 6, \dots, 15, 25, 28,$		
	u*_/u*_=	$= 2088/.423E-3 = .49E7$ \ 32)		
	$\lambda_{\max}^*/\lambda_{\min}^* =$			

PROBLEM:		117 (Colville No.2, Shell Dual)			
CLASSIFICA	TION:	PQR-P1-1			
SOURCE:		Colville [20], Himmelblau [29]			
NUMBER OF	VARIABLES:	n = 15			
NUMBER OF	CONSTRAINTS:	$m_1 = 5$, $m - m_1 = 0$, $b = 15$			
OBJECTIVE	FUNCTION:				
f(x) =	-∑ bjxj - j=1 jxj -	$ \sum_{j=1}^{5} \sum_{k=1}^{5} c_{kj} x_{10+k} x_{10+j} + 2 \sum_{j=1}^{5} d_{j} x_{10+j}^{3} $			
CONSTRAINT 5	S :	2 10			
2∑ c _k k=1	j ^x 10+k ^{+ 3d} j ²	$x_{10+j} + e_j - \sum_{k=1}^{\infty} a_{kj} x_k \ge 0$, j=1,,5			
0. ≤ x	0 ≤ x _i , i=1,,15				
a _{ij} ,b _j ,	c _{ij} ,d _j ,e _j :	cf. Appendix A			
START:	x ₀ =	.001(1,1,1,1,1,60000,1,1,1,1,1,1,1,1)			
	f(x ₀) =	2400.1053 (feasible)			
SOLUTION:	x* =	(0,0,5.174136,0,3.061093,11.83968,0,0,			
		.1039071,0,.2999929,.3334709,.3999910,			
		.4283145,.2239607)			
	f(x*) =	32.348679			
	r(x*) =	$e(x^*) = .35E-4$			
	ц =	11 $I(x^*) = (1, \dots, 7, 9, 12, 13,$			
	u*_/u*_ =	56.75/.2240 = 253 \ 15)			
	$\lambda_{\max}^*/\lambda_{\min}^* =$	3.30/.10 = 32.3			

PROBLEM:			118
CLASSIFICATION:			QLR-P1-2
SOURCE:			Bartholomew-Biggs [4]
NUMBER OF	VARIABLES:		n = 15
NUMBER OF	CONSTRAINT	S:	$m_1 = 29(29)$, $m-m_1 = 0$, $b = 30$
OBJECTIVE	FUNCTION:		
f(x) =	$\sum_{k=0}^{4} (2.3)$	x 3k	$+1 + .0001x_{3k+1}^{2} + 1.7x_{3k+2} + .0001x_{3k+2}^{2}$
	+ 2	• 2x	$3k+3 + .00015x_{3k+3}^{2}$
CONSTRAINT	S:		
0 ≤ x ₃₁	+1 - X ₃₁₋₂	+ '	$7 \le 13$ $0 \le x_{7+10} - x_{7+1} + 7 \le 14$
$0 \le x_{3,i}$	$+3 - x_{3i} +$	7 =	≤ 13 j=1,,4
$x_1 + x_2$	$+ x_3 - 60$	2	$0 \qquad x_{1} + x_{5} + x_{6} - 50 \ge 0$
$x_7 + x_8$	+ x ₉ - 70	≥	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
x ₁₃ + x	14 ^{+ x} 15 ⁻	100) ≥ 0
8 5 x	e 91	А	3 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
0 = 1	< 0.0	4	$3 \le x_2 \le 57$ $3 \le x_3 \le 16$
k=1	+1 - 90	C	$3 x_{3k+2} = 120$ $0 \le x_{3k+3} \le 60$
SMADM.			
SIANI:	xo	=	(20,55,15,20,60,20,20,60,20,20,60,
	£ ()		20,20,60,20) (feasible)
	$I(x_0)$	=	664.82045000
SOLUTION:	x*	=	(8,49,3,1,56,0,1,63,6,3,70,12,
			5,77,18)
	f(x*)	=	664.8204500
	r(x*)	=	0
	e(x*)	=	0
	μ	=	15
	I(x*)	=	(1,17,18,19,20,22,23,24,25,27,28,29,30,
	u* /u* min	Ш	$2.941/.04860 = 60.5$ \ $32,35$)
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	-

PROBLEM:			119 (Colville No.7)			
CLASSIFICA	TON.		PLR-P1-2			
SOURCE:			Colville [20], Himmelblau [29]			
NUMBER OF	VARIABLES:		n = 16			
NUMBER OF	CONSTRAINTS	5:	$m_{-} = 0$, $m_{-}m_{-} = 8(8)$, $h = 32$			
OBJECTIVE	FUNCTION:					
$f(x) = \sum_{i=1}^{16} \sum_{j=1}^{16} a_{ij}(x_i^2 + x_i + 1)(x_j^2 + x_j + 1)$						
CONSTRAINT	S :					
16 ∑ ^b i j=1	$\sum_{j=1}^{16} b_{ij} x_j - c_i = 0$, $i=1,,8$					
0 ≤ a,b.;	x _i ≤ 5 ,	, A	i=1,,16 ppendix A			
L J L						
START:	xo	=	(10,,10) (not feasible)			
	$f(x_0)$	=	566766			
SOLUTION:	x*	=	(.03984735,.7919832,.2028703,.8443579,			
			1.126991,.9347387,1.681962,.1553009,			
			1.567870,0,0,0,.6602041,0,.6742559,0)			
	f(x*)	=	244.899698			
	r(x*)	=	•26E-9 e(x*) = •36E-8			
	ц	=	5 $I(x^*) = (10, 11, 12, 14, 16)$			
	u*	=	95.99/4.201 = 22.9			
	$\lambda_{\max}^*/\lambda_{\min}^*$	=	39.2/25.1 = 1.56			

Appendix A

CONSTANT DATA

This appendix summarizes constant data, parts of the definition of the problem functions, and numerical results which would break the documentation scheme used in Chapter IV to describe the test problems. The corresponding abbreviations are explained in the test problem documentations.

i	ai	b _i	i	a _i	b _i
1	8	• 49	23	22	.41
2	8	•49	24	22	•40
3	10	.48	25	24	.42
4	10	.47	26	24	.40
5	10	.48	27	24	.40
6	10	•47	28	26	.41
7	12	.46	29	26	.40
8	12	•46	30	26	.41
9	12	• 45	31	28	• 41
10	12	•43	32	28	.40
11	14	• 45	33	30	•40
12	14	•43	34	30	•40
13	14	• 43	35	30	. 38
14	16	• 4 4	36	32	.41
15	16	• 43	37	32	•40
16	16	•43	38	34	•40
17	18	•46	39	36	.41
18	18	• 45	40	36	.38
19	20	•42	41	38	•40
20	20	.42	42	38	.40
21	20	•43	43	40	.39
22	22	• 41	44	42	.39

No. 57:

Table 5: Data for test problem no. 57.

Let $y_i = y_i(x)$. The functions are described by a subprogram:

$$y_{2} = 1.6x_{1}$$
10 $y_{3} = 1.22y_{2} - x_{1}$
 $y_{6} = (x_{2} + y_{3})/x_{1}$
 $y_{2c} = .01x_{1}(112 + 13.167y_{6} - .6667y_{6}^{2})$
if $|y_{2c} - y_{2}| \le .001$ goto 30 else goto 20
20 $y_{2} = y_{2c}$
goto 10
30 $y_{4} = 93$
40 $y_{5} = 86.35 + 1.098y_{6} - .038y_{6}^{2} + .325(y_{4} - 89)$
 $y_{8} = 3y_{5} - 133$
 $y_{7} = 35.82 - .222y_{8}$
 $y_{4c} = 98000x_{3}/(y_{2}y_{7} + 1000x_{3})$
if $|y_{4c} - y_{4}| \le .001$ goto 60 else goto 50
50 $y_{4} = y_{4c}$
goto 40
60 stop

i	a _i	i	a _i
1	0	8	5000
2	0	9	2000
3	85	10	93
4	90	11	95
5	3	12	12
6	.01	13	4
7	145	14	162

Table 6: Data for test problem no. 67.

M		-7	0	1
TAC) .	(U	

i	°.	^y i,obs
1	• 1	.00189
2	1	.1038
3	2	.268
4	3	.506
5	4	.577
6	5	.604
7	6	.725
8	7	.898
9	8	.947
10	9	.845
11	10	.702
12	11	.528
13	12	.385
14	13	.257
15	14	.159
16	15	.0869
17	16	.0453
18	17	.01509
19	18	.00189

Table 7: Data for test problem no. 70.

<u>No. 83</u>:

i	a _i	i	a _i
1	85.334407	7	.0029955
2	.0056858	8	.0021813
3	.0006262	9	9.300961
4	.0022053	10	.0047026
5	80.51249	11	.0012547
6	.0071317	12	.0019085

Table 8: Data for test problem no. 83.

No. 84:

i	a _i	i	a _i
1	-24345	11	15711.36
2	-8720288.849	12	-155011.1084
3	150512.5253	13	4360.53352
4	-156.6950325	14	12.9492344
5	476470.3222	15	10236.884
6	729482.8271	16	13176.786
7	-145421.402	17	-326669.5104
8	2931.1506	18	7390.68412
9	-40.427932	19	-27.8986976
10	5106.192	20	16643.076
		21	30988.146

Table 9: Data for test problem no. 84.

Let
$$y_{i} = y_{i}(x)$$
, $c_{i} = c_{i}(x)$.
 $y_{1} = x_{2} + x_{3} + 41.6$
 $c_{1} = .024x_{4} - 4.62$
 $y_{2} = 12.5/c_{1} + 12$
 $c_{2} = .0003535x_{1}^{2} + .5311x_{1} + .08705y_{2}x_{1}$
 $c_{3} = .052x_{1} + 78 + .002377y_{2}x_{1}$
 $y_{3} = c_{2}/c_{3}$
 $y_{4} = 19y_{3}$
 $c_{4} = .04782(x_{1} - y_{3}) + .1956(x_{1} - y_{3})^{2}/x_{2} + .6376y_{4}$
 $+ 1.594y_{3}$
 $c_{5} = 100x_{2}$
 $c_{6} = x_{1} - y_{3} - y_{4}$
 $c_{7} = .95 - c_{4}/c_{5}$
 $y_{5} = c_{6}c_{7}$
 $y_{6} = x_{1} - y_{5} - y_{4} - y_{3}$
 $c_{8} = (y_{5} + y_{4}).995$
 $y_{7} = c_{8}/y_{1}$
 $y_{8} = c_{8}/3798$
 $c_{9} = y_{7} - .0663y_{7}/y_{8} - .3153$
 $y_{9} = 96.82/c_{9} + .321y_{1}$
 $y_{10} = 1.29y_{5} + 1.258y_{4} + 2.29y_{3} + 1.71y_{6}$
 $y_{11} = 1.71x_{1} - .452y_{4} + .58y_{3}$
 $c_{10} = 12.3/752.3$
 $c_{11} = (1.75y_{2})(.995x_{1})$
 $c_{12} = .995y_{10} + 1998$
 $y_{12} = c_{10}x_{1} + c_{11}/c_{12}$
 $y_{13} = c_{12} - 1.75y_{2}$

$$y_{14} = 3623 + 64.4x_2 + 58.4x_3 + 146312/(y_9 + x_5)$$

$$c_{13} = .995y_{10} + 60.8x_2 + 48x_4 - .1121y_{14} - 5095$$

$$y_{15} = y_{13}/c_{13}$$

$$y_{16} = 148000 - 331000y_{15} + 40y_{13} - 61y_{15}y_{13}$$

$$c_{14} = 2324y_{10} - 28740000y_2$$

$$y_{17} = 14130000 - 1328y_{10} - 531y_{11} + c_{14}/c_{12}$$

$$c_{15} = y_{13}/y_{15} - y_{13}/.52$$

$$c_{16} = 1.104 - .72y_{15}$$

$$c_{17} = y_9 + x_5$$

i	ai	bi
2	17.505	1053.6667
3	11.275	35.03
4	214.228	665.585
5	7.458	584.463
6	.961	265.916
7	1.612	7.046
8	.146	.222
9	107.99	273.366
10	922.693	1286.105
11	926.832	1444.046
12	18.766	537.141
13	1072.163	3247.039
14	8961.448	26844.086
15	.063	. 386
16	71084.33	140000
17	2802713	12146108

Table 10: Data for test problem no. 85.

<u>No. 86, 117</u>:

j	1	2	3	4	5
e j	-15	-27	-36	-18	-12
°1j	30	-20	-10	32	-10
°2,j	-20	39	-6	-31	32
c _{3j}	-10		10	-6	-10
°4.j	32	-31	-6	39	-20
c _{5j}	-10	32	-10	-20	30
d j	4	8	10	6	2
a _{1j}	-16	2	0	1	0
a _{2j}	0	-2	0	4 =	2
a _{3j}	-3.5	0	2	0	0
a _{4j}	0	2	0	-4	-1
a _{5j}	0	9	-2	1	-2.8
a _{6j}	2	0	-4	0	0
a _{7j}	-1	-1	1	-1	-1
a _{8j}	-1	-2	-3	-2	-1
a _{9j}	1	2	3	4	5
^a 10j	1	1	1	1	1
bj	-40	-2	25	-4	-4
b _{5+j}	-1	-40	-60	5	1

Table 11: Data for test problem no. 86, 117.

No. 88 - 92:

n		X.*	
2	1.0743194566137		
3	1.0743194566137	.30E-10	
4	.708479 .24E-4	.807600456614	
5	.701893 .22E-11	.813331 .456614	.90E-11
6	.49414410E-4	.61495124E-5	.729259456613

Table 12: Solution vectors for test problems no. 88 to 92.

n	r(x*)	e(x*)	$\lambda_{\max}^*/\lambda_{\min}^*$
2	•36E-11	.13E-6	.10E1
3	•73E-11	.94E-7	.20E2
4	. O	.14E-3	.65E8
5	.36E-11	.13E-6	.11E9
6	. 0	.16E-2	•43E7

Table 13: Constraint violations, norm of Kuhn-Tucker-vector, and condition number for test problems no. 88 to 92.

<u>No. 95 - 98:</u>

i	b(95)	b(96)	b(97)	b(98)
1	4.97	4.97	32.97	32.97
2	-1.88	-1.88	25.12	25.12
3	-29.08	-69.08	-29.08	-124.08
4	-78.02	-118.02	-78.02	-173.02

Table 14: Data for test problems no. 95 to 92.

M	0		Q	Q	
TA	0	6)	2	٠

b = 32

i	a.	t _i
1	0	0
2	50	25
3	50	50
4	75	100
5	75	150
6	75	200
7	100	290
8	100	380
Table 15:	Data fo	or test problem

<u>No. 101 - 103</u>:

i	x*(101)	x*(102)	x*(103)
1	2.856159	3.896253	4.394105
2	.6108230	.8093588	.8544687
3	2.150813	2.664386	2.843230
4	4.712874	4.300913	3.399979
5	.9994875	.8535549	.7229261
6	1.347508	1.095287	.8704064
7	.03165277	.02731046	.02463883

Table 16: Solution vectors for test problems no. 101 to 103.

TAT			-11	2		22
N	0		1	()	h	.0
TA.	U		- 1	V)	÷
_		-		_		

i	y _i	i	y _i
1	95	168-175	175
2	105	176-181	180
3-6	110	182-187	185
7-10	115	188-194	190
11-25	120	195-198	195
26-40	125	199-201	200
41-55	130	202-204	205
56-68	135	205-212	210
69-89	140	213	215
90-101	145	214-219	220
102-118	150	220-224	230
119-122	155	225	235
123-142	160	226-232	240
143-150	165	233	245
151-167	170	234-235	250

Table 17: Data for test problem no. 105.

<u>No. 109</u>:

i	x ×		x. i	i	x* i	
1	674.8881	4	3711526	7	201.465	
2	1134.170	5	252.0000	8	426.661	
3	.1335691	6	252.0000	9	368.494	

Table 18: Solution vector for test problem no. 109

No. 111, 112:

Ţ.	сj	j	C j
1	-6.089	6	-14.986
2	-17.164	7	-24.100
3	-34.054	8	-10.708
4	-5.914	9	-26.662
5	-24.721	10	-22.179

Table 19: Data for test problems no. 111 and 112.

<u>No. 114</u>:

Bounds for test problem no. 114:

.00001	\leq	x ₁	\leq	2000
.00001	\leq	x2	\leq	16000
.00001	\leq	x ₃	\leq	120
.00001	\leq	x ₄	\leq	5000
.00001	\leq	x ₅	\leq	2000
85	\leq	x ₆	\leq	93
90	\leq	x_7	\leq	95
3	\leq	x ₈	\leq	12
1.2	\leq	x9	\leq	4
145	\leq	^x 10	\leq	162

<u>No. 116</u>:

 $.1 \le x_1 \le 1$ $.1 \le x_7 \le 1000$ $1 \le x_2 \le 1$ •1 ≤ x₈ ≤ 1000 .1 ≤ x₃ ≤ 1 500 ≤ x₉ ≤ 1000 $0001 \le x_4 \le 0.1$.1 ≤ x₁₀ ≤ 500 $.1 \le x_5 \le .9$ 1 ≤ x₁₁ ≤ 150 .0001 ≤ x₁₂ ≤ 150 $\cdot 1 \leq x_6 \leq \cdot 9$ $0001 \le x_{13} \le 150$

Bounds for test problem no. 116:

Ν	0	1	1	9	
distant.	-	 _	-	-	

-

j	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
a _{1j}	1	0	0	1	0	0	1	1	0	0	0	0	0	0	0	1
a _{2j}	0	1	1	0	0	0	1	0	0	1	0	0	0	0	0	0
a _{3j}	0	0	1	0	0	0	1	0	1	1	0	0	0	1	0	0
a _{4j}	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0
^a 5j	0	0	0	0	1	1	0	0	0	1	0	1	0	0	0	1
^a 6j	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	0
a _{7j}	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0
a _{8j}	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0
^a 9j	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1
^a 10j	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0
a _{11j}	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0
a _{12j}	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
^a 13j	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
a _{14j}	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
^a 15j	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
^a 16j	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Table 20: Data for test problem no. 119.

j	^b 1j	^b 2j	b _{3j}	^b 4j	^b 5j	^b 6j	^b 7j	b _{8j}	сj
1	. 22	-1.46	1.29	-1.10	• 0	• 0	1.12	• 0	2.5
2	.20	• 0	89	-1.06	• 0	-1.72	• 0	• 45	1.1
3	.19	-1.30	• 0	• 95	• 0	33	• 0	.26	-3.1
4	.25	1.82	. 0	54	-1.43	• 0	• 31	-1.10	-3.5
5	.15	-1.15	-1.16	• 0	1.51	1.62	• 0	•58	1.3
6	.11	• 0	96	-1.78	•59	1.24	• 0	• 0	2.1
7	.12	.80	• 0	41	33	.21	1.12	-1.03	2.3
8	.13	. 0	49	• 0	43	26	• 0	.10	-1.5
9	1.00	• 0	• 0	. 0	. 0	• 0	36	• 0	
10	• 0	1.00	• 0	• 0	. 0	• 0	• 0	• 0	
11	• 0	• 0	1.00	• 0	• 0	• 0	• 0	• 0	
12	• 0	• 0	• 0	1.00	• ()	• 0	• 0	• 0	
13	• 0	• 0	. 0	• 0	1.00	• 0	• 0	• 0	
14	• 0	• 0	• 0	• 0	• 0	1.00	• ()	• 0	
15	• 0	• 0	• 0	.0	• 0	• 0	1.00	• 0	
16	• 0	• 0	• 0	• 0	• 0	• 0	• 0	1.00	

Table 21: Data for test problem no. 119.

References

- [1] J. Asaadi, A computational comparison of some nonlinear programs, Mathematical Programming, Vol.4 (1973), 144-154.
- [2] M. Avriel, A.C. Williams, An extension of geometric programming with applications in engineering optimization, Journal of Engineering Mathematics, Vol.5, No.3 (1971), 187-194.
- [3] G.K. Barnes, M.S. Thesis, The University of Texas, Austin, Texas, 1967.
- [4] M.C. Bartholomew-Biggs, A numerical comparison between two approaches to nonlinear programming problems, Technical Report No.77, Numerical Optimisation Centre, Hatfield, England, 1976.
- [5] P.A. Beck, I.G. Ecker, A modified concave simplex algorithm for geometric programming, Journal of Optimization Theory and Applications, Vol.15, No.2 (1975), 189-202.
- [6] E.J. Beltrami, A comparison of some recent iterative methods for the numerical solution of nonlinear programs, in: Proceedings of the Second International Conference on Computing Methods in Optimization Problems, San Remo, 1968, Springer-Verlag, Berlin, Heidelberg, New York, 1969.
- [7] M.J. Best, A feasible conjugate-direction method to solve linearly constrained minimization problems, Journal of Optimization Theory and Applications, Vol.16, No.1/2 (1975), 25-38.
- [8] J.T. Betts, An accelerated multiplier method for nonlinear programming, Journal of Optimization Theory and Applications, Vol.21, No.2 (1977), 137-174.

(171)

- [9] J. Beuneu, Adaption de la methode des centres linearisée a un probléme de dispatching économique, Report du Laboratoire de Calcul de la Faculté des Sciences de l'Université de Lille, 1972.
- [10] M.C. Biggs, Computational experience with Murray's algorithm for constrained minimization, Technical Report No.23, Numerical Optimisation Centre, Hatfield, England, 1971.
- [11] M.J. Box, A new method of constrained optimization and a comparison with other methods, Computer Journal, Vol.8, No.1 (1965), 42-51.
- [12] M.J. Box, A comparison of several current optimization methods and the use of transformation in constrained problems, Computer Journal, Vol.9 (1966), 67-77.
- [13] J. Bracken, G.P. McCormick, Selected applications of nonlinear programming, John Wiley & Sons, Inc., New York, 1968.
- [14] R.G. Brusch, A rapidly convergent method for equality constrained function minimization, IEEE Conference of Decision and Control, San Diego, California, 1973.
- [15] R.G. Brusch, A numerical comparison of several multiplier methods for equality constrained function minimization, Paper No. WA2.6, Convair Division of General Dynamics Corporation.
- [16] J.C.P. Bus, A proposal for the classification and documentation of test problems in the field of nonlinear programming, Reprint, Mathematisch Centrum, Amsterdam, 1977.
- [17] C.W. Caroll, The created response surface technique for optimizing nonlinear restrained systems, Operations Research, No.9 (1961), 169.
- [18] C. Charalambous, Nonlinear least path optimization and nonlinear programming, Mathematical Programming, Vol.12, No.2 (1977), 195-225.

- [19] E. von Collani, Kostenoptimale Prüfpläne bei laufender Kontrolle eines normalverteilten Merkmals, Dissertation, Institut für Angewandte Mathematik und Statistik, Universität Würzburg, 1978.
- [20] A.R. Colville, A comparative study on nonlinear programming codes, IBM Scientific Center Report 320-2949, New York, 1968.
- [21] R.S. Dembo, Solution of complementary geometric programming problems, M.Sc. Thesis, Technion, Haifa, 1972.
- [22] R.S. Dembo, A set of geometric programming test problems and their solutions, Mathematical Programming, Vol.10, No.2 (1976), 192-213.
- [23] V. Dimitru, S. Moga, Testing the efficiency of the sequential optimizing technique, Economic Computation and Economic Cybernetics Studies and Research, No.4 (1973), 55-62.
- [24] U. Eckhardt, Pseudo-complementary algorithms for mathematical programming, in: Numerical Methods for Nonlinear Optimization, F.A. Lootsma ed., Academic Press, New York, 1972.
- [25] Y. Evtushenko, Generalized Lagrange multiplier technique for nonlinear programming, Journal of Optimization Theory and Applications, Vol.21, No.2 (1977), 121-136.
- [26] R. Fletcher, S.A. Lill, A class of methods for nonlinear programming. II: computational experience, in: Nonlinear Programming, J.B. Rosen, O.L. Mangasarian, K. Ritter eds., Academic Press, New York, 1970.
- [27] F.J. Gould, Nonlinear tolerance programming, in: Numerical Methods for Nonlinear Optimization, F.A Lootsma ed., Academic Press, New York, 1972.
- [28] J.K. Hartman, Iterative determination of parameters for an exact penalty function, Journal of Optimization Theory and Applications, Vol.16, No.1/2 (1975), 49-66

- [29] D.M. Himmelblau, Applied nonlinear programming, McGraw-Hill Book-Company, New York, 1972.
- [30] D.M. Himmelblau, R.V. Yates, A new method of flow routing, Water Resources Research, Vol.4 (1968), 1193.
- [31] W. Hock, Testing nonlinear programming codes, submitted for publication.
- [32] A.G. Holzman, Comparative analysis of nonlinear programming codes with the Weisman algorithm, SRCC Report No.113, University of Pittsburgh, Pittsburgh, 1969.
- [33] W.S. Hsia, Decomposition of the convex simplex method, Journal of Optimization Theory and Applications, Vol.16, No.5/6 (1975), 399-408.
- [34] H.Y. Huang, A.K. Aggerwal, A class of quadratically convergent algorithms for constrained function minimization, Journal of Optimization Theory and Applications, Vol.16, No.5/6 (1975), 447-485.
- [35] J.P. Indusi, A computer algorithm for constrained minimization, in: Minimization Algorithms, Mathematical Theories and Computer Results, G.P. Szegö ed., Academic Press, New York, 1972.
- [36] A.P. Jones, The chemical equilibrium problem: an application of SUMT, Report RAC-TP-272, Research Analysis Corporation, McLean, Virginia, 1967.
- [37] H. Konno, A cutting plane algorithm for solving bilinear programs, Mathematical Programming, Vol.11, No.1 (1976), 14-27.
- [38] H.W. Kuhn, A.W. Tucker, Nonlinear programming, in: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Programming, University of California Press, Berkeley, 1951.
- [39] C.L. Lawson, R.J. Hanson, Solving least squares problems, Prentice Hall, Englewood Cliffs, New Jersey, 1974.

- [40] G.P. McCormick, Second order conditions for constrained minima, SIAM Journal on Applied Mathematics, Vol.15, No.3 (1967), 641-652.
- [41] G.P. McCormick, Computability of global solutions to factorable nonconvex programs: Part I - Convex underestimating problems, Mathematical Programming, Vol.10, No.2 (1976), 147-175.
- [42] A. Miele, E.E. Cragg, R.R. Iyer, A.V. Levy, Use of the augmented penalty function in mathematical programming problems, part 2, Journal of Optimization Theory and Applications, Vol.8, No.2 (1971), 115-130.
- [43] A. Miele, H.Y. Huang, J.C. Heideman, Sequential gradientrestoration algorithm for the minimization of constrained functions, ordinary and conjugate gradient versions, Journal of Optimization Theory and Applications, Vol.4, No.4 (1969), 213-243.
- [44] A. Miele, P.E. Mosaley, A.V. Levy, G.M. Coggins, On the method of multipliers for mathematical programming problems, Journal of Optimization Theory and Applications, Vol.10, No.1 (1972), 1-33.
- [45] A. Miele, J.L. Tietze, A.V. Levy, Comparison of several gradient algorithms for mathematical programming problems, Aero-Astronautics Report No.94, Rice University, Houston, Texas, 1972.
- [46] H. Mine, K. Ohno, M. Fukushima, A conjugate interior penalty method for certain convex programs, SIAM Journal on Control and Optimization, Vol.15, No.5 (1977), 747-755.
- [47] B.A. Murthagh, R.W. Sargent, A constrained minimization method with quadratic convergence, in: Optimization, R. Fletcher ed., Academic Press, New York, 1970.
- [48] D.A. Paviani, A new method for the solution of the general nonlinear programming problem, Ph.D. Dissertation, The University of Texas, Austin, Texas, 1969.

- [49] J.D. Pearson, On variable metric methods of minimization, Report RAC-TP-302, Research Analysis Corporation, McLean, Virginia, 1968.
- [50] H.E. Pickett, A contribution to the thaumaturgy of nonlinear programming, Report No. ATR-71 (S9990)-1, The Aerospace Corporation, San Bernardino, California, 1970.
- [51] M.J.D. Powell, A method for nonlinear constraints in minimization problems, in: Optimization, R. Fletcher ed., Academic Press, New York, 1969.
- [52] M.J.D. Powell, Algorithms for nonlinear constraints that use Lagrangian functions, Mathematical Programming, Vol.14, No.2 (1978), 224-248.
- [53] M.J. Rijckaert, Engineering applications of geometric programming, in: Optimization and Design, M. Avriel, M.J. Rijckaert, M. Wilde, eds., Prentice Hall, Englewood Cliffs, New Jersey, 1973.
- [54] K. Schittkowski, An adaptive precision method for the numerical solution of constrained optimization problems applied to a time-optimal heating process, Proceedings of the 8-th IFIP Conference on Optimization Techniques, Springer-Verlag, Berlin, Heidelber, New York, 1978.
- [55] K. Schittkowski, Nonlinear programming codes Information, tests, performance, Lecture Notes in Economics and Mathematical Systems, No.183, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [56] S.B. Schuldt, A method of multipliers for mathematical programming problems with equality and inequality constraints, Journal of Optimization Theory and Applications, Vol.17, No.1/2 (1975), 155-161.
- [57] B.V. Sheela, P. Ramamoorthy, Swift a new constrained optimization technique, Computer Methods in Applied Mechanics and Engineering, Vol.6, No.3 (1975), 309-318.

- [58] W.B. White, S.H. Johnson, G.B. Dantzig, Chemical equilibrium in complex mixtures, Journal of Chemical Physics, Vol.28 (1958).
- [59] K.P. Wong, Decentralization planning by vertical decomposition of an economic system: A nonlinear approach, Ph.D. Thesis in National Economic Planning, University of Birmingham, Birmingham, England.