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"And out of olde bokes, in good feyth,
Cometh all this newe science that men lere'"

CHAUCER, THE PARLIAMENT OF FOWLS

INTRODUCTION

What we are concerned with is, roughly, the generalization
to the elliptic case of the familiar multiple angle formulas

of elementary trigonometry such as

cos 26 = 2 cos® 6 - 1; tan 26 = 22N

1—tan28

sin 26 = 2 sin 6 cos 8 = 2 sin 6/(1 - sinze)

(which are respectively polynomial, rational, algebraic).
More generally we have

cos n@ = 2n'1[cosn 6 - %ﬂl cos™% g o]

which we can also express as a Chebyshev polynomial:

n-1.n

Tn(x) = cos(n arccos x) = 2 [x - n-2 ]

nx # Liw

A

= 2" 1T (.

207

S. P. Singh et al. (eds.), Approximation Theory and Spline Functions, 207245,
© 1984 by D. Reidel Publishing Company.



J. TODD

208

AX

1 @an3dty

(x)7 =K

‘x

72
4

(x)€} =4



SR s N e L TSR L S

i

APPLICATIONS OF TRANSFORMATION THEORY 209

Zolotarev stated and solved in 1868, 1877, 1878, four
problems in approximation theory, or the constructive theory of
functions. These problems turned up again in practical contexts
in different areas and different countries and were solved in-
dependently during the last 50 years. We state these problems
in 82. We describe in 3A, B, C some applications of (Z3).
Finally, we give some indication of the solutions: in §4, we
first discuss-an elementary problem which indicates the method
for dealing with (Z1) and in §5, we discuss the general method
of solution. The solutions all depend on the theory of trans-
formation of elliptic functions, a subject beyond the scope of
the usual texts, [cf. 22.421, W8W] and the usual sylllabi.
Greenhill [1892, p. x, Introduction] notes the reintroduction
of elliptic functions '"... excluding the theta functions and
the theory of transformation' in the regulations for Schedule II,
Part I of the Mathematical Tripos at Cambridge, beginning in
May 1893.

Although Chebyshev was well aware of the inspiration afford-
ed by applications, as indicated by the following quotation
[Chebyshev, 1899, I, p. 239] there seems to be no reference to
the potentialities of the work of Zolotarev.

"Le rapprochement de la théorie et de la pratique donnent
les résultats les plus féconds. La pratique n'est pas la seule
a tirer profit de ces rapports: réciproquement les sciences

"~ elles-mémes se développent sous 1'influence de la pratique.
" C'est elle qui leur découvre de nouveaux sujets d'étude et des
¢ points de vue nouveaux sur les sujets connus depuis longtemps."

There is a short biography of Zolotarev by Ozigova [1966].
Actually he is perhaps more celebrated for his work in algebra
and number theory than in approximation theory.

For an account of Chebyshev's visit to England in 1852 and

' other relevant matters, see the Inaugural Lecture of A. Talbot

[1971].

It is worth noting that Zolotarev wrote in the Minutes of

- the Meeting of the Council of the St. Petersburg University for
- the second half of the academic year 1869/70: "In mathematics

. it is incomparably harder to find a problem and state in cor-
rectly than to solve it; as soon as a problem is stated cor-

rectly its solution is found in one way or another."

See Kuznetsov [1971].
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§2. ZOLOTAREV'S FOUR PROBLEMS

To see the place of the first problem we go back to the
Chebyshev polynomials. It is well known that the best approxi-
mation to_zero in [-1,1] by a monic polynomial in the Chebyshev
norm is Tn(x). In fact

(T1) min max |x" + alxn_1 .. 4+ an|
(a)-1sx<1
: 1-n : :
is 2 and is achieved by
Tn(x) = I(x - xr)
where
X, = cos((2r + )n/2n), r =0, 1, ..., n - 1.

There are several related problems which we state:

(T2) (Markov) Determine

min max |a

(a) -1=x<1 2

where ar =1 for some r, 1 <71 < n,

(T3) (Chebyshev) Determine

: n n-1
min  max ]aox *ax + ...+ an[
(a) -1<x<1
. n n-1
where for some & outside [-1,1], aog + alg toeota =,
n given.

We note that the T 's,in compensation for their smallness

inside [-1,1], are largest outside:

(T4) (Chebyshev) If pn(x) is a polynomial of degree n

such that max |p (x)| =1 then for £ outside [-1,1] we
Pl s R n —_
-1<x<1

have

Ip (&) < |1, (8)].
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In (T1) Chebyshev fixed the first coefficent. Zolotarev
asked the same question only requiring that the first ftwo co-
efficients be fixed.

(Z1) Determine

min  max ]xn - nox * ax + ... + a
(a) -1sxs1

where o 1s a parameter.

This being solved, it is natural to ask the same question
only fixing the first three coefficients. This was solved by
Achiezer in 1928. The final stage was results about the case when
r coefficients were fixed: these were obtained by Meiman in
1960. For details see the reviews and translations of his
papers.

The second problem of Zolotarev is related to (Z1) just as
(T3) is to (T1).

(Z2) Determine

. n n-1
min max Ix + ax + L.+ anl
(az,...,an) -1=x<1
. . n n-1
where a; 1is determined so that & + alé * .o ta =,

where &, (£ < -1 or & > 1) and n are given.

The other two problems of Zolotarev are concerned with
rational approximation. [Compare these with (T4).] The relations
between the problems have been discussed in detail by Achiezer.

(Z3) Find the rational function y = ¢(x)/y(x), where the
degrees of the polynomials ¢, ¢ do not exceed n, which
satisfies

lyy| <1, -1 s x <1

and which deviates most from zero in the intervals |[x| >k °,
where k, 0 <k <1 1is given.
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(Z4) Find the rational function y = ¢(x)/¥(x), where the
degrees of the polynomials ¢,¢ do not exceed n, such that ;

7

y(x) 21 for 1 <x < k-l, y(x) s -1

and which deviates least from zero in these intervals, where

for —k—1 <x < -1

0 <k <1.

We mention here a problem discussed by Achiezer:

(A1) Determine

: n n-1
min max|x" + a;x + ... +a

(a)

ol

where the max is over all x 1in the #wo intervals -1 < x < -A !

A<x <1 where XA, 0 <A <1 1is given.
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§3. SOME APPLICATIONS OF ZOLOTAREV'S THIRD PROBLEM (Z3)
A. Design of Filters

An electrical filter is a '"black box" with '"knobs'", contain-

ing variable components (condensers, resistances), which influ-
ences an input signal according to a Tresponse curve:

ﬁy
y= vix) /\

——

Figure 3
We have contact every day with filters: implicitly in telephone
conversations and explictly in high-fidelity equipment. For a
more detailed ‘discussion see Melzak [1976].

To filter out the "high notes" requires a response of the
form:

I —

y:Y(X’

S — X

1

Figure 4

This is a "low pass' filter. This realises the truncation of a
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Fourier series. This steep cut-off is not realisable and so we

777k -
[ 270%%

o<

.

i.e. we want to adjust the parameters so that, given k, 0 <k <1

Figure 5

1/2 -1/2

|r| dis small in [0,k "°], |r| ds large in [k ,®) .

For certain circuits the response is of the form
r(x) = H[(a - X )/(1 - a X )I

and so our problem becomes

(Z3') Determine

min max IH(a - X )/(1 a X )|

(a) osxsvk
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which is very similar to (T1) when written as

(T1') Determine min max 1T(x - r.).
(r) -1<x<1 J

-1 ]
[Because r(x) r(x ") = 1 we have only to consider one of the
conditions (1).]

These problems were discussed in Germany, beginning with
W. Cauer [1933] and in U.S.A. at Bell Telephone Laboratories
[1939] by S. D. Darlington and E. L. Norton. Cauer was employed
at the Mix and Genest organisation, later a subsidiary of the
ITT Corporation.

The solution to (Z3') is givenm by

a; = Yk sn(2jK/(2m+1),k) j =1, 2, ..., m

and the extremal value is
/ 1-k$
2m 1+k$

where km corresponds to qm as k corresponds to q.

The number n determines the size (cost) of the filter,
the parameter k determines how sharp the cut-off is and the
min-max gives the attenuation in the pass-band. To assist the
designer, tables of the quantities involved were made -- now-a-days
program packages would be written -- by e.g., Glowatzki [1955]
U.S. National Bureau of Standards, (1956, unpublished), and
A. R. Curtis [1964].

E. Stiefel [1961] contemplated extensions of this problem
where we want to filter out a band (or several bands) of fre-
quencies
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jASS-_STOP ol PASS

Figure 6

The solution to this problem involves hyperelliptic
functions. Stiefel's associates, Amer and Schwarz [1964] have
solved some practical problems, not in closed form, but by
linear programming methods. This work was subsidized by the
Hasler foundation.

We mention here that a problem concerning the optimal de-
sign of radio transmitters which produce a narrow principal
beam and small subsidiary beams has been discussed by
Pokrovskii [1962]. This leads to an extremal problem which
generalizes (Al).

3B. ADI Parameters

The alternating direction implicit method for the iterative
solution of the discrete approx1mat10ns to elliptic partial dif-
ferential equations was introduced in 1955 by Peaceman and
Rachford [1955] in work supported by Humble 0il Company. In
the case of the '"model problem" the speed of convergence depends
on

=

®

-
=

1{(x—rj)/(x+rj)}

where the r. are certain parameters to be chosen and where

k, 1 are lower and upper bounds to the characteristic values of
the (normalized) matrix of the system of linear equations approxi-

mating the differential equation U ® uyy = 0 1in a square

0 <x,y <1. The question of the optimal choice of the rj
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was answered when m = 2% by Gastinel [1962] and Wachspress

[1963]. 1Indeed, more generally, from an optimal set of m
parameters an optimal set of 2m can be found by the use of
the arithmetic-geometric mean. The optimal parameters were
found by W. B. Jordan (see Wachspress [1963]), based on Cauer's
work. Jordan and Wachspress were employed at the Knolls Atomic
Power Laboratory of the General Electric Company.

The actual result is the following:

rj = dn((2j-1)K/2m,k}, j =1, 2, ..., m

L=1L =(l- /kl;l)/(l + '/kr};)

where km corresponds to qm as k corresponds to q.

The question of the optimal value of m arises. The
proper question is about the behavior of

n = t/m
m m

Gaier and Todd [1967]} showed that o + and in fact that

log n = log q + [(log 2)/m] + O(m_z) (2)

which implies that the asymptotic value was attained (in the
practical range of q) for moderate values of m: favourite
values of m were 8 or 16 or 10. De Boor and Rice [1963]
had obtained empirical results which were very close to (2).

Another question which was recently studied by V. I.
Lebedev [1977], was: What is the best order to use the para-
meters?

3C. Square Roots

Consider the determination of N by the Newton process:
. 1
" = 1]
guess X, and improve by X 5 (xn + (N/xn))'. Convergence
takes place for any Xg > 0. What is the best X, to use?

We have to make this question more precise. Let us only con-
sider using floating point calculators. It is then natural to
restrict N to lie between 10-2 and 1 (in the decimal case)

or between %— and 1 (in the binary case). It is then appropriate
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to consider the relative error

r = [(xn - N) /AN

n

Next we ask: What value of n? In virtue of a minor miracle,
first observed by Moursund [1967], it does not matter, provided
n 2 1. It is natural to consider making Xg @ rational function

of N of type (u,v), say, 1i.e. numerator with degree < u,
denominator with degree < v,

Xy = nu(N)/dv(N)

so that we consider

v = - /DL

In virtue of another minor miracle the extremal X4 is a constant

multiple of the extremal X, sowe have to look at

[1 - {nu(N)//N dv(N)}I )

For a collection of references to work in this area, see Todd
[1977].

The problem of determining the optimal coefficients in
ny, d, when p=v or u=v+ 1 was solved in general by
Ninomiya [1970]. (For small yu, v the coefficients were found
algebraically by Maehly (see Cody [1964]).

A typical numerical result in the case of (2,1) approxi-

mation in (%3 1) 1is

0.3432201292 N> + 1.071299971 N + 0.085805032
0~ N + 0.5

for which we have

N =0.25 X 1.00090 088

0

n

0.50020 0044 N =1 Xy

1.00000 0451

1 0.50000 0040 1

o]
1t

X

The general solution in the (n,n) case is
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> (1 - ¢, ) +c, X

2r 2r
0 " 1+A! L (1 - ¢

2r-1) * Copo1

(3)

where

c snz(rK/zn,k), A= k7 Ic

T 2r-1
and the min-max is
L= (1-Xx")/(1+2").

We shall derive the general formula in §5 below and obtain
this one by specialization.

In a memorandum of 25 June, 1962, E. L. Wachspress used
the A.G.M. parameters to accelerate the convergence of the Newton
process for the positive square root of a positive definite
matrix.

§4., ZOLOTAREV'S FIRST PROBLEM (Z1)

The applications of this seem less interesting. For
instance, we can "economize' polynomials approximating a poly-
nomial of degree n by one of degree n - 2. These ideas have
been exploited by C. Lanczos [1893-1974 and S. Paszkowski [1962].

However the solution to the problem looks quite mysterious.

n n-1 n-2
|x - Nox + a.x + ... + a |

(Z1) min  max 2 v 0

(a) -1=x=1
We may assume o = 0. For o = 0 we are back to (T1).

For small o the solution is a distorted Chebyshev poly-

nomial. Specifically, if 0 £ o < tanz(ﬂ/Zn), the extremal
polynomial is

2! (1+0)" T_((x-0)/(o+1)),

and the minmax is 21_n(1+o)n.

For larger o the solution is given in an extremely com-
plicated form, involving various elliptic quantities. We use
the standard notation of Whittaker and Watson [1927]. We are
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given n, o and first solve the following equation for k,
which is involved in K and in the elliptic and theta functions

* _ 2 sn (K/n) 4(“/2n)
1+ 0= o&/mydnk/n) (ms(2K/m) ", (i/2n) }

This k is unique and 0 <k <1 when o > tanz(w/Zn).

Then the extremal polynomial y = x" - n o S s

given parametrically by

y = 3 LIX" + X,

X = [sn2u + snz(K/n)]/[snzu - snz(K/n)],

where

o<
1

[T, CCr/2m) - (mu/2K) V[T (n/2n) + (wu/2K))].

When u runs from 0 to iK' then x runs from -1 to 1.
The corresponding min max is

1/2“2

L= 2" /AT, (n/2m)T (ﬂ/Zn)}]

A similar separation into cases occurs in the solution of
(Al). Here the solution is a distorted Chebyshev polynomial for
all o« when n is even, and for small o (specifically,

0 < a < sin(r/2n)) when n is odd; for n odd and
o > sin(n/2n) the solution is complicated. See, e.g.,Achiezer
[1970, p. 209].

What we shall do is to discuss a simple problem, not di-
rectly relevant, but which illustrates the general method of
solution and shows how to dispel some of the mysteries about
[Z1 . The problem, which has been discussed by Hornecker [1958],
Achiezer [1956, 1967], Bernstein [1926], Talbot [1962, 1964],
is:

(B1) Determine

min max |(1+x)_1 - (aoxn + L.+ an)l'

(a) 0=xx1

For references to the literature on this problem, see Todd
[1984b].

*7 denotes "curly theta'.
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A method of handling all the problems discussed is to guess
the answer and then confirm it by appealing to the weighted
rational equal ripple theorem, due essentially to Chebyshev but
refined by de la Vallée Poussin and others. In the non-degenerate
case we have:

Equal Ripple Theorem (ERT). Suppose f(x) and w(x) are
continuous in [a,b], and that w(x) # 0 in [a,b]. Then the
extremal function for the problem

N, (%)
nin max |E(x)|, where E(x) = f(x) - w(x) TR
N,D a<x<b d(x)
_ n _ d
(where Nn(x) = bOx + ...+ bn’ Dd(x) = agxs + ... * ayg,a, #0)

is characterized by E(x) assuming its maximum absolute value
with positive and negative signs alternately, n + d + 2 times
in [a,b].

The original application of this is to (T1) (with n + 1

for n) when f(x) = xn+1 and w(x) =1, d =0, a, = -1.

Another instance is when f(x) =1, w(x) = x_l/2 which occurs

in §3C. Detailed knowledge of the trigonometric and elliptic
functions ensures quick but unmotivated proofs. Thus H. Lebesgue
[1920], reviewing de la Vallée Poussin's [1919] Borel Tract,
writes "..par une sorte de divination qui rappelle bien son
illustre compatriote Tchebycheff, M. Bernstein trouve les poly-

: : -1
nomes d'approximation de (z-a) ~, ...".

We now illustrate, by discussing (Bl), a second approach
to our problems which involves the use of ERT at the start to
get a differential equation for the extremal error which may then
be solved and lead to the result required. In this approach we
refer to tables of (elliptic) integrals instead of to the prop-
erties of elliptic functions.

What we apply used to be called '"Curve Tracing'": From the
qualitative behavior specified by ERT we can get a differential
equation for the solution to (Bl). The even and odd cases look
slightly different -- we shall deal only with the case n = 2.
Using ERT we show that the graph of the error function y(x)
must be of the form:
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M«

[a+xt- (a0x2 +ax +a,)]

~<
1]

y' three zeros

y £ L each three zeros

Figure 7
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If the extremal values of y(x) are * L then y2 - L2 has
simple zeros at 0,1 and n double zeros in the interior of
[0,1] while y' has n simple zeros at these points and a
single extraneous zero, a 1in (-*, -1). It follows that

A+ 0% x1-xy?=nlx- 0l -yH

where a,L are yet to be found. Writing y = Ln and noting
that n(0) = 1 we find

f” xdY Jx (1 Lray X
At 0 1+X7 ¥YX(1-X)

where the ambiguous sign changes at each extrema, beginning with
a negative sign.

The integrals involved here are elementary and we can solve

explicitly for n. If we use the fact that y(l) = -L we can
determine

a =0 = -1- /2n-l.
n

To determine L we use the fact that (1+x)y(x) ~1 as
x ~ -1. This gives

- Lz om0
L = Ln =7 (3-2v2)".
[The results for o s Ln for n =1, 2 can be checked by

elementary methods. ]

The final result is that the best approximation is given by
1
V2 {[5 -cT(2x - 1) +cTy(2x - 1) + ... +

+ (-1)“'1cn'1Tn_1(2x DY+ -nta - A T (2x - 1)

where ¢ = 3 - 2/2. This expression is remarkable because it
is got by truncating the Fourier-Chebyshev expansion of

(1 + x)_1 and dividing the last term by 1 - c2. This was
pointed out explicitly by Hornecker [1958] and Talbot [1962]
and examined further by Rivlin [1962].
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We now return to (Z1). From ERT it follows that the

n n-1 n-2

extremal y(x) = x - nox + X + ... has (n-2) +2 =n

alternating extrema. Curve tracing arguments show that either
all n -1 zeros of y', or all but one of these lie in
[-1,1], and this is the cause for the separation into the trig-
onometric and elliptic cases. We sketch the behavior of vy,
when n =2 and n = 3, in the two cases:
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The differential equation in the trigonometric case is

I+

_*tdy ndx

/2 - v TV{(1 + x)(B - x)}

3]

where the deviation L and the largest extrema, B, have to be
determined.

The differential equation in the elliptic case is

t dy _ n{c - x)dx
/P -1 e - D - (6 - 0)

where the deviation L, the two largest extrema o, B and the
extraneous turning point ¢ have to be determined.

Alternative accounts of the solution of (Z1) are given by
Erdds and Szegd [1942], by Achiezer [1953; 1967] and by Carlson
and Todd [1983].

In the solution of (Al) the degenerate form of the ERT is
required: if the polynomials N and/or D are truncated say

_ n n-u _ d v
Nn—box + . +bn_ux 5 Dd—aox + ... +ad_vx

then the number of extrema must be reduced by max(u, v). For

a discussion of the general case of ERT see, e.g. Achiezer
[1953, p. 55].

§5. THE GENERAL METHOD OF SOLUTION

The problems we have discussed led, by use of the Equal
Ripple Theorem, to differential equations of the form

dx - Mdy
Y{(1 - xz)(l . k2x2)} (1 - yz)(l - Azyz)}

(1

where- y was to be an algebraic, rational or polynomial
function of x and where k was given and M, X to be de-
termined. In some cases k, or k and X were zero. In
some cases elliptic differentials of the third kind or hyper-
elliptic differentials were involved instead of those of the
first kind.

Thus our problems are those of the "transformation" of
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eglliptic objects (differentials, integrals, functions or
I-functions). This theory has been with us since the very
beginning with formulation and solutions by Abel, Jacobi,
Gauss, Legendre, Riemann, etc.

The recent literature on transformation is not very ex-
tensive: Riemann [1899], Tricomi [1948], Achiezer [1970],
Lang [1973], Rauch-Lebowitz [1973], Robert [1973], Houzel [1978].

We begin with four elementary examples: the first three
deal with integrals.

(I) Fagnano (1682-1766) pointed out essentially that

JT dt 1 d

T ) = 9z
0 Y(t(1 - t%)) {Z v(z(1 - 2)))
if T = (1 - 2)/(1 + Z) which is established by the (linear)
transformation

t=(1-2z)/(1 + z).

Hence if T =v2 -1 then Z = v2 - 1 =T. This means we
have succeeded in bisecting a quadrant of a lemniscate

(r2 = cos 2 0, in polar coordinates). We can represent the
curve parametrically as

x = (1 + /22, y = e - vy2t/?

and, differentiating, we find

32 2 %+ y% = e - YL

(I1) Gauss (1777-1855) and Landen (1719-1790) essentially
used a quadratic transformation to determine the arithmetic-
geometric mean M of non-negative ay» b0 where a, > bO.

The existence of M = lim a, = l1im bn’ where a b are

n
defined by

/2

=1 _ 1
4he1 =7 (@ +b)s by = (30
is easily established by monotony. The trans formation

1 .2
y =5 (x7 - ab)/x
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which runs from -» to o as x runs from 0 to
with a little algebra,

T2 2.2 2 .-1/2
Jm{(x + %J(x +t%)} d

® 2 |
[ {(yz * an+1)(y2 * bn+9} & d

Repetition of this gives
{oe]

J {(x2 + 302)(x2 + b

2,4-1/2
0 13 d

J (e? vy e? + MY Y2 gt =

- 00

so that
M= — il -
[ {(x2 + aoz)(x2 + b02)}—1/2 d
_ nao
2.1/2

2 K{(a0 - b )/a )77}

J. TODD

o gives,

This presentationcis based on one of D. J. Newman [1982 3
there are several others available, all depending on an in-

variant integral.

(II11) Landen shéwed, by a geometric argument essentially

equivalent to that in (II), that if

k)

(I -k")/01 +k")
then

K

%-(1 + k') K, K!' = (1 +k') K.

1
(IV) The differential equation

2,-1/2 2,-1/2

n(l - x7) dx = (1 - y7) dy, y(1) =
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is satisfied by the Chebyshev polynomial

y = Tn(x) = cos(n arccos Xx)

It is not too surprising that the well-known approximation
properties of this degenerate case of the transformation equation
carry over in some measure to the general case.

The special case of (1), when A =k, is called the
multiplication problem. The solutions to this will either hold
for all k and then M = n, a positive integer, or will hold
only for special values of k, when the period ratio is a com-
plex quadratic surd, as is the multiplier, M. The first type
is called real multiplication, the second is called complex
multiplication.

We pursue this question of transformation and multiplication
further. The Weierstrassian case is trivial, since the periods
of p can be chosen arbitrarily (subject only to (wz/wl) >0).

Thus if p has periods 2w1, 2w2 then

p(2) + (o) - e)(e; - el (D) - e

has periods Wi 2w2. [CE. W. § W, 456, 444.]1 Also [WG&W,
4411

4,01 2, ., .13

p (2u) = 3
40 —gzp —gs

where the arguments u of the p's on the right have been
omitted.

There is a very different state of affairs in the Jacobian
case, for the quarter-periods K,K' are not independerit, both
being uniquely determined by k. We cannot construct a
Jacobian function with say, quarter periods, K, Ki with

Ki = 2K', K1 = K; the best we can do is to introduce a
"multiplier" for the argument. We discuss a numerical example.

As k increases from 0 to 1, K increases from ;%n
to « and K' decreases from = to %—n . Consequently,

K*'/K decreases from « to 0. Here are two sets of numerical
values:
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1.7508, K'/K = 0.8774,

k=0.8, k' =0.6 , K=1.9953, KXK'

1.749.

k = 0.25, k' 0.9682, K 1.5962, K!' 2.8012, K'/K

These are special cases of the (complete) Landen trans
formations (WgW, §22.42) mentioned in Example III above.

If we begin with sn(u, k), with k = 0.8 and K'/K =
0.8774 it is clear from the graph of K'/K against k that
there will be a unique A, actually A = 0.25, such that
A'/A =2 K'/K and that A/K has a specific value, actually
0.8, the multiplier, M. The elliptic function

sn(u/M, A), actually sn(l.25 u, 0.25)
will have quarter periods K, 2K'.

In general the multiplier will depend on n, the order
of transformation and on the modulus, k.

We now outline the solution of the general transformation
problem. There are some advantages in using the Riemann
Normal Form. We shall, however, for simplicity use the
Weierstrass form. But, for applications, we will return to
the traditional Jacobi form, despite its complications.

Take the case

X y
as | & ve | a @

2 ’ J 2
0 V(4X" - g )X - gg) 0 V(4Y" - v,Y - vg)

with

Mv,

u
Inverting (2) we get

x = (u; 2w1, 2w2), y = (v; 291, 292)

where x has periods 2w 2w and y has periods 291, 292.

17 772

Because of the hypothesis that x, y are related by a polynomial
equation we can conclude that the periods are not independent

and that the elliptic functions x, y have a common period
parallelogram and, say,
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r2, = aw. + bw
1 1 2 )
(3)

sQZ = cw1 + dw2

where r, s, a, b, ¢, d are integers. An algebraic relation
between X, y can be obtained by taking a polynomial of
sufficiently high degrees in x, y, balancing the principal
parts by choice of the coefficients, and then appealing to
Liouville's Theorem. (Cf. e.g. Copson, [1935].) We can show
that if the relation is A(X, y) = 0 then to a value of x
corresponds T values of y and to a value of y corresponds
n = ad - bc values of x.

We shall now show that the algebraic relation between
X, ¥ can be replaced by two rational ones. In fact denote by

z the Yy function with half-periods 7y = ¥ Ql, M, =S QZ and

apply the last remark in the immediately preceding paragraph
to the pair x, z and to the pair y, z. We conclude that
X, z are connected by an equation

B(x,z) =0

which is of degree 1 x 1 =1 in x and degree rs in z
and that y, z are connected by an equation

C(x, z) =0

of degree 1 in y and degree n in z. So x and y are
expressible rationally in terms of the new variable z.

Qur problem now is to find in closed form the transformation
between the two elliptic objects (integrals, functions (Weierstrass
or Jacobian) or theta functions) with which we are concerned.

We have seen that it is enough to discuss_ the rational
case when the half-periods are related by

Ql aw1 + bw2

QZ = oWy + dw2

with a, b, ¢, d integers (without common factor) and
ad - bc = n > 0.

To do this we consider the factorization of the matrices
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First of all, any such matrix M can be represented as a
product of the form

U'S" U'S” ... N ... SUSU
where
n 0 [1 0 11
N = , S= , U= ,
0 1 11 0 1

and where the powers to which U, S are raised are not
indicated, except by dots. (This result is due to C. Cellitti
[1914].) For instance,

3 4 10121 117 sz oJ 1 017’ o1t

2 20 1 1 0 1 0 1j[1 1 0 1]

We can now factorize N into diagonal matrices using the
decomposition of n into prime factors. Continuing our
example

52 0 2 0]2 13 0

Thus M can be represented as a product of 2 x 2 matrices
of determinant 1, 2 and odd primes. The transformation is
similarly decomposed into transformations of order 1, order 2,
and order an odd prime. The last two are called principal
transformations of the first kind -- those of the second kind
correspond to matrices

1 0
0 n

which can however, be represented in terms of matrices of
the first kind and the matrix of order 1
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since

Notice that a principal transformation means that one or
other period is multiplied or divided by the order n and
that a principal transformation of the first kind followed by
one of the second kind, both of the same order produce a multi-
plication (division) of the periods by the order.

There are various ways to derive the relevant transforma-
tion formulas, e.g. the usual Liouville arguments or the use of
the elementary multiple angle formulas and the definitions of
the elliptic functions in terms of I-functions. We outline the
latter approach.

n
2n n 2

Lemma. X - 2x cosnb + 1= T {x° - 2x cos(B+(sm/n))+1}.

s=1

Proof. The left hand side is (xn - exp(ine))(xn - exp(-in6)).
Use Demoivre's Theorem for each factor and then combine conju-
gate factors.

If in the classical formula (¢(q) standing for H(l—qzr))

oo
~

T,(z,q) = o(@ T {1-24°"" cos 22 + q
r=1

4r—2}

n ;
we replace z by nz, and q by q and use the lemma in
each factor on the right, change the order of multiplication,
and recombine factors we find

~ n-1 .
I,(nz,4") = (8(@)/[6(@]1" T I, (z+(sn/n),q).
s=0

Similar results hold for the other I-functions.

We now use the representations of the Jacobian elliptic
functions as quotients of theta functions, such as
~ ~_2
I, (ur,)
3 1*73
sn(u,k) == -
I

P
2 I, ;")
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to get transformation formulas for the Jacobian functions, in
particular the following result.

Theorem. If n is odd

-1 2
l—czssn (u,k)

2 2
1-k CygSM (u,k)

sneM 1A = M lsnqu, k) 1

9

vhere ¢ = snz(rKn—l,k), and

n 2

T o1 /8

A=k M= Ii(c

2r-1 2r)

(all products are over s, from s =1 to s = %—(n—l)).

The transformation (9) is a First (Principal) Transfor-
mation: The periods A, A' being connected with K, K' by
the relations

A = K/nM, A' = K'/M.

In the Second (Principal) Transformation the periods are con-
nected by the relations

A = K/M, A" = K'/nM,

For details of these see e.g. Cayley [1895] and Achiezer
[1970, p. 284].

We note here that in Greenhill [1892] there is a proof of
the basic formulas by means of an electromagnetic analogy
(Kelvin's method of images).

This formula (9) is essentially that used in the discussion
of the Cauer problem (see, e.g. Oberhettinger and Magnus [1949]).
To solve the ADI problem we have to use the n even analog of
(9). The analog of (9) for the dn function gives the solution
to the Ninomiya problem given above; we continue this discussion
as announced.

Theorem. If n is an integer then

2
1 Com-1 ¥ Sopep 90 (WK)

dn(u M7, A\) = dn(u,k) T

(10)

2
Com * Som dn” (u,k)
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where

n 2
h=kms, e M=mls, /50,

5 = sn’(jK/n, k), ¢; = cn’(k/n, k),

and where all products run from m =1 to m = [n/2].

The optimal starting value, for /x, when x is re-
stricted to [a, 1], is given by

y = Vx/A! dn(uM-l, A)
when
2
x = a nd” (u,k).

[As u runs from 0 to X, dn runs from 1 to k' and

x from a to a/k'2 so that we take k' = va .]

If we specialize this to n =4, a=1/4 we find

1 1
(e + g spi(egx + 755)
7o Lo (c,x + Lsy
2 2 4 72
= = g ' = = =
since ¢, =0, s, = 1. When k Va 5 since
s.=+k0 L e =k k0t
2 > 72
we have
(2/c,YA") [c,c %2 5 l-x(s c, +s.c.) + (s,5,./16)]
_ 2 173 4 173 371 173
Yy = 1 .
X+

From Ninomiya [1970] or Carlson and Todd [1983] we can

235

compute the coefficients in the numerator. These are all surds

2

and, e.g., we find the coefficient of x™ to be

1/4

a = 2(¥V2 - 1)(24V2)° = 0.34322 0129;
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that of x is
a(3 + ¥2)/V/2 = 1.07129 9971

and the constant term is

a = 0.08580 5032.

b|H

These values agree with those in the continued fraction repre-
sentation given by Ninomiya [1970, p. 403].

56. A MODERN TREATMENT OF TRANSFORMATION

This is described in the books of Houzel [1978], Lang [1973]
and Robert [1973]. It is somewhat sophisticated and the essential
identity of elliptic functions, the tori which are the corre-
sponding Riemann surfaces, elliptic curves and period lattices
is assumed.

A singular cubic curve is rational, i.e. its points can
be expressed rationally in terms of a parameter, e.g. the slope
of a line through the singularity (such a line meeting the
curve in one other point). To parameterize a nonsingular cubic,
we need elliptic functions. For the curve

2 _ .5
y =4x - gzx - g3

or, in homogeneous form,

2 4.3 2 3
y'z = 4x° - 8,X2" - 8,2

we can take

x=p(u), y=p"(w (1)

where the ¢ function has invariants g,, g,. We can define

an abelian group on such a curve by the %ollgwing geometrical
construction, when a point 0 on the curve is taken arbitrarily
as the zero element: to find the sum C of points A, B on
the curve we denote by D the residual intersection of the line
AB and then the sum "A + B" is the residual intersection of
OD with the curve. It is easy to see that if 0 is taken as

a point at infinity (0,1,0) then if A has parameter a

and B parameter b 1in representation (1) above then the
parameter of C = "A + B" is a + b.



APPLICATIONS OF TRANSFORMATION THEORY 237

It is natural to study mappings between two elliptic
curves (or their lattices) which preserve the group operation --
these are called isogenies. It turns out that these are essen-
tially the transformations which we have been studying.

§7. REMARKS
1. There have been discussions of the Zolotarev problems when
the L, norm is used in place of the L_, when trigono-

metric polynomials, and when entire functions are used in
place of polynomials. See e.g. Gontar [1969], RyZzakov
[1965, 1969], Meiman [1960, 1962], Galeev [1975],
Feherstorfer [1979].

2. The elegant solutions to the problems can be used to indi-
cate the efficiency of algorithms for optimal parameters
in cases where there are no theoretical results available.
Of course, from general principles, near optimal parameters
will give very near optimal results, in a smooth environ-
ment.

3. There has been a certain amount of activity in other as-
pects of rational approximation, e.g. by D. J. Newman
[1978], A. R. Reddy [1977, 1978], E. B. Saff and R. S.
Varga [1980]. Particulary relevant is recent work by
Lorentz, Saff, Varga and others on approximation
by incomplete polynomials.

* This study is a sketch for part of an extensive survey arti-
cle "Applications of elliptic functions and elliptic integrals"
which will appear elsewhere. A preliminary version was pre-
sented at a special session on '"History of Contemporary Mathe-
matics'" at the Annual Meeting of the American Mathematical
Society, 7 January 1981.
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